Agric. Econ. - Czech, 2014, 60(12):546-552 | DOI: 10.17221/160/2014-AGRICECON

Automatic discovery of the regression model by the means of grammatical and differential evolutionOriginal Paper

Jiří LÝSEK, Jiří ©«ASTNÝ
Department of Informatics, Faculty of Business and Economics, Mendel University in Brno, Brno, Czech Republic

In the contribution, there is discussed the usage of the method based on the grammatical and differential evolution for the automatic discovery of regression models for discrete datasets. The combination of these two methods enables the process to find the precise structure of the mathematical model and values for the model constants separately. The used method is described and tested on the selected regression examples. The results are reported and the obtained mathematical models are presented. The advantages of the selected approach are described and compared to the classical methods.

Keywords: context-free grammar, evolutionary methods, genetic algorithm, sum of squared error

Published: December 31, 2014  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
LÝSEK J, ©«ASTNÝ J. Automatic discovery of the regression model by the means of grammatical and differential evolution. Agric. Econ. - Czech. 2014;60(12):546-552. doi: 10.17221/160/2014-AGRICECON.
Download citation

References

  1. Alabdulkader A.M., Al-Amoud A.I., Awad F.S. (2012): Optimization of the cropping pattern in Saudi Arabia using a mathematical programming sector model. Agricultural Economics - Czech, 58: 56-60. Go to original source...
  2. Beránek L. (2012): The Use of the Belief Function Theory for a Situation Inference. In: Proceedings of 18th International Conference on Soft Computing - MENDEL, pp. 106-111. Brno University of Technology, Brno; ISBN 978-80-214-4540-6.
  3. Číľek L., ©»astný J. (2013): Comparison of Genetic Algorithm and Graph-Based Algorithm for the TSP. In: 19th International Conference on Soft Computing - MENDEL 2013. Brno University of Technology, Brno, pp. 433-438; ISBN 978-80-214-4755-4.
  4. Hopcroft J.E., Ullman J.D. (1969): Formal Languages and their Relation to Automata. Addison-Wesley, Boston; ISBN 978-0201029833.
  5. Kapounek S., Poměnková J. (2013): The endogeneity of optimum currency area criteria in the context of financial crisis: Evidence from the time-frequency domain analysis. Agricultural Economics - Czech, 59: 389-395. Go to original source...
  6. Koza R.J. (1992): Genetic Programming II: On the Programming of Computers by Means of Natural Selection. The MIT Press; ISBN 0-262-11170-5.
  7. Levenshtein V.I. (1966): Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady, 10: 707-710.
  8. Lýsek J., ©»astný J., Motyčka A. (2012): Object Recognition by means of Evolved Detector and Classifier Program. In: Proceedings of 18th International Conference on Soft Computing - MENDEL 2012, pp. 82-87. Brno University of Technology, Brno; ISBN 978-80-214-4540-6.
  9. Lýsek J., ©»astný J., Motyčka A. (2013): Comparison of Neural Network and Grammatical Evolution for Time Series Prediction. In: Proceedings of 19th International Conference on Soft Computing - MENDEL 2013, pp. 215-220. Brno University of Technology, Brno; ISBN 978-80-214-4755-4.
  10. Meloun M., Militký J. (1994): Statistické zpracování experimentálních dat v chemometrii, biometrii, ekonometrii a v daląích oborech přírodních, technických a společenských věd. (Statistical processing of experimental data in chemometry, biometry, econometry and in other fields of natural and social sciences.) Plus Praha. ISBN 80-85.
  11. Meloun M. (1996): Statistické zpracování experimentálních dat: sbírka úloh. (Statistical processing of experimental data: workbook.) Univerzita Pardubice; ISBN 80-7194075-5.
  12. Miller B.L., Goldberg D.E. (1995): Genetic Algorithms, Tournament Selection and the Effects of Noise. IlliGAL Report No. 95006, Department of General Engineering, University of Illinois, p. 13.
  13. Mitchell M. (1999): An Introduction to Genetic Algorithms. MIT Press, Cambridge, Massachusetts; ISBN 0-262-13316-4.
  14. Munk M., Drlík M. (2011): Influence of different session timeouts thresholds on results of sequence rule analysis in educational data mining. Communications in Computer and Information Science, 166: 60-74. Go to original source...
  15. O'Neill M., Brabazon A., Adley C. (2004): Automatic Generation of programs for Classifcation Problems with Grammatical Swarm. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation (CEC 2004), pp. 104-110. Portland, Oregon; ISBN 0-7803-8515-2. Go to original source...
  16. Popelka O., ©»astný J. (2009): WWW portal usage analysis using genetic algorithms. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 6: 201-208. Go to original source...
  17. Popelka O., ©»astný J. (2009): Uplatnění metod umělé inteligence v zemědělsko-ekonomických predikčních úlohách. (Using artificial intelligence methods for agricultural and economic data prediction.) Folia Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Brno; ISBN 978-80-7375-340-5.
  18. Price K.V., Storn R.M., Lampinen J.A. (2005): Differential Evolution - a Practical Approach to Global Optimization. NCS Springer, Berlin Heidelberg; ISBN 978-3540-31306-9.
  19. Ryan C., O'Neill M. (2003): Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Kluwer Academic Publishers; ISBN 978-14615-0447-4.
  20. ©korpil V., ©»astný J. (2009): Comparison Methods for Object Recognition. In: Proceedings of the 13th WSEAS International Conference on Systems. Rhodos, Greece, pp. 607-610; ISBN 978-960-474-097-0.
  21. ©tencl M., Popelka O., ©»astný J. (2011): Comparison of time series forecasting with artificial neural network and statisticial approach. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2: 347-352. Go to original source...
  22. ©»astný J., ©korpil V. (2007): Genetic Algorithm and Neural Network. In: Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Vouliagmeni, Greece, pp. 347-351. ISSN 17905117. ISBN 978-960-8457-96-6.
  23. Veselý A. (2011): Economic classification and regression problems and neural networks. Agricultural Economics - Czech, 57: 150-157. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.