Agric. Econ. - Czech, 2024, 70(8):395-405 | DOI: 10.17221/99/2024-AGRICECON

Do peers and agglomeration affect farm efficiency?Original Paper

Sunhyung Min1, Kwansoo Kim2
1 Center for Agriculture Policy Evaluation, Korea Rural Economic Institute, Naju-si, Republic of Korea
2 Department of Agricultural Economics and Rural Development, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea

This study investigates peer effects and agglomeration impacts on the cost efficiency of South Korean rice farms using a five-year panel dataset of production costs. We employed a time-varying stochastic frontier cost function approach to estimate cost efficiency and a linear-in-means model to quantify peer influences. The findings underscore peer effects as central to understanding and enhancing farm productivity, particularly in rice farming regions. Both specialisation and diversity of agglomeration positively influenced efficiency, with specialisation having a larger impact. Peer effects were stronger in highly rice-specialised areas. These findings indicate the necessity of incorporating peer influences and regional specialisation in agricultural policymaking for productivity enhancement. A nuanced, evidence-based approach leveraging peer dynamics and agglomeration economies is advocated to boost the efficiency of farming practices.

Keywords: agglomeration economies; cost efficiency; peer effects; stochastic frontier approach

Received: March 13, 2024; Revised: July 21, 2024; Accepted: July 30, 2024; Prepublished online: August 16, 2024; Published: August 30, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Min S, Kim K. Do peers and agglomeration affect farm efficiency? Agric. Econ. - Czech. 2024;70(8):395-405. doi: 10.17221/99/2024-AGRICECON.
Download citation

References

  1. Baltagi B.H., Lesage J.P., Pace R.K. (2016): Spatial Econometrics: Qualitative and Limited Dependent Variables. Brighton, Emerald Publishing: 396. Go to original source...
  2. Beaudry C., Schiffauerova A. (2009): Who's right, Marshall or Jacobs? The localization versus urbanization debate. Research Policy, 38: 318-337. Go to original source...
  3. Blume L.E., Brock W.A., Durlauf S.N., Ioannides Y.M. (2011) Identification of social interactions. Available at https://ssrn.com/abstract=1660002 (accessed Oct 20, 2019). Go to original source...
  4. Cillero M.M., Thorne F., Wallace M., Breen J., Hennessy T. (2018): The effect of direct payments on cost efficiency of Irish beef farms: A stochastic frontier analysis. Journal of Agricultural Economics, 69: 669-687. Go to original source...
  5. Do M.H., Nguyen T.T., Grote U. (2023): Land consolidation, rice production, and agricultural transformation: Evidence from household panel data for Vietnam. Economic Analysis and Policy, 77: 157-173. Go to original source...
  6. Feng H., Li J. (2016): Head teacher, peer effect, and student achievement. China Economic Review, 41: 268-283. Go to original source...
  7. Glaeser E.L., Kolko J., Saiz A. (2001): Consumer city. Journal of Economic Geography, 1: 27-50. Go to original source...
  8. Hailu G., Deaton J.B. (2016): Agglomeration effects in Ontario's dairy farming. American Journal of Agricultural Economics, 98: 1055-1073. Go to original source...
  9. Jacobs J. (1970): The Economies of Cities. New York, Vintage: 288.
  10. Jaime M.M., Salazar C.A. (2011): Participation in organizations, technical efficiency and territorial differences: A study of small wheat farmers in Chile. Chilean Journal of Agricultural Research, 71: 104-113. Go to original source...
  11. Kazukauskas A., Newman C.F., Thorne F.S. (2010): Analysing the effect of decoupling on agricultural production: Evidence from Irish dairy farms using the Olley and Pakes approach. German Journal of Agricultural Economics, 59: 144-157. Go to original source...
  12. Konar A., Roe B., Irwin E. (2014): Peer effect and farmer heterogeneity in tillage choices. Available at https://doi.org/10.22004/ag.econ.170808 (accessed Oct 9, 2019) Go to original source...
  13. Kumbhakar S., Wang H.J., Horncastle A.P. (2015): Estimation of technical efficiency in cost frontier models using cross-sectional data. In: A Practitioner's Guide to Stochastic Frontier Analysis Using Stata. Cambridge, Cambridge University Press: 100-127. Go to original source...
  14. Kim K., Chavas J.P., Barham B., Foltz J. (2012): Specialization, diversification and productivity: A panel data analysis of rice farms in Korea. Agricultural Economics, 43: 687-700. Go to original source...
  15. Lhabitant F.S. (2017): Portfolio Diversification. London, Elsevier: 262. Go to original source...
  16. Manski C.F. (1993): Identification of endogenous social effects: The reflection problem. The Review of Economic Studies, 60: 531-542. Go to original source...
  17. Marshall A. (1890): Principles of Economics. London, Macmillan: 731.
  18. Morrissey K. (2016): A location quotient approach to producing regional production multipliers for the Irish economy. Papers in Regional Science, 95: 491- 506. Go to original source...
  19. Mundlak Y. (1978): On the pooling of time series and cross section data. Econometrica, 46: 69-85. Go to original source...
  20. Nguyen T.T., Tran V.T., Nguyen T.T., Grote U. (2021): Farming efficiency, cropland rental market and income effect: Evidence from panel data for rural Central Vietnam. European Review of Agricultural Economics, 48: 207-248. Go to original source...
  21. Park K., Yang I., Yang T. (2017): The peer-firm effect on firm's investment decisions. The North American Journal Economics and Finance, 40: 178-199. Go to original source...
  22. Peiró-Signes A., Segarra-Oña M., Miret-Pastor L., Verma R. (2015): The effect of tourism clusters on U.S. hotel performance. Conell Hospitality Quarterly, 56: 155-167. Go to original source...
  23. Sauer J., Frohberg K., Hockmann H. (2006): Stochastic efficiency measurement: The curse of theoretical consistency. Journal of Applied Economics, 9: 139-165. Go to original source...
  24. Silberglitt R., Bartis J.M., Chow B.G., An D.L., Brady K. (2013): Critical Materials: Present Danger to U.S. Manufacturing. Santa Monica, RAND Corporation: 46. Go to original source...
  25. Songsermsawas T., Baylis K., Chhatre A., Michelson H. (2016): Can peers improve agricultural revenue? World Development, 83: 163-178. Go to original source...
  26. Statistics Korea (2012a): Rice Production Cost Survey 2008-2012. Available at https://mdis.kostat.go.kr/(accessed Sept 20, 2019).
  27. Statistics Korea. (2012b): Farm Household Economy Survey 2008-2012. Available at https://mdis.kostat.go.kr/(accessed Sept 20, 2019).
  28. Statistics Korea (2015): Census of Agriculture 2005, 2010, 2015. Available at https://mdis.kostat.go.kr/(accessed Sept 20, 2019).
  29. Tirkaso W., Hailu A. (2022): Does neighborhood matter? Spatial proximity and farmers technical efficiency. Agricultural Economics, 53: 374-386. Go to original source...
  30. Wang H.J., Schmidt P. (2002): One-step and two-step estimation of the effects of exogenous variables on technical efficiency levels. Journal of Productivity Analysis. 18: 129-144. Go to original source...
  31. Widodo W., Salim R., Bloch H. (2015): The effects of agglomeration economies on technical efficiency of manufacturing firms: Evidence from Indonesia. Applied Economics, 47: 3258-3275. Go to original source...
  32. Zhu X., Lansink A.O. (2010): Impact of CAP subsidies on technical efficiency of crop farms in Germany, the Netherlands and Sweden. Journal of Agricultural Economics, 61: 545-564. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.