Agric. Econ. - Czech, 2024, 70(3):125-136 | DOI: 10.17221/329/2023-AGRICECON

Assessment of agricultural carbon emissions reduction potential and optimisation pathways based on a framework of equity and efficiency principles: Evidence from Fujian Province in ChinaOriginal Paper

Jie Ye1,2, Renshan Xie3, Xingwei Deng4, Minling Lin4, Yang Chen4, Ketao Lin5, Jianzhou Yang6
1 College of Business, Quanzhou Normal University, Quanzhou, P. R. China
2 Private Economic Development Research Institute of Characteristic New Think Tank for Universities in Fujian Province, Quanzhou, P. R. China
3 Quanzhou Rural Revitalization Group, Quanzhou, China
4 Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, P. R. China
5 College of Resource and Environment Sciences, Quanzhou Normal University, Quanzhou, P. R. China
6 School of Economics and Management, Fujian Agriculture and Forestry University, Fuzhou, P. R. China

Fujian Province, China was chosen as the study area for estimating the marginal agricultural abatement costs within the province based on data for 2010–2020. The study employed these estimations as a pivotal factor affecting the efficiency of carbon emissions reduction, constructed an index model to gauge the potential of agricultural carbon emissions reduction, and delved into the urban agricultural carbon emissions reduction potential from the perspectives of economic development rights (equity) and carbon emissions reduction difficulty (efficiency). Our findings indicated a marked regional disparity in the marginal abatement costs of agriculture across Fujian Province, with the highest recorded at EUR 1.3771 × 108 per 104 tonnes and the lowest at EUR 0.6526 × 108 per 104 tonnes, albeit demonstrating general upward inter-annual trends. Furthermore, the assessment of agricultural carbon emissions reduction potential, grounded in the principles of equity and efficiency, revealed four distinct developmental tiers. Resource allocation pathways for carbon emissions reduction were subsequently delineated, informed by the stratification of high- and low-carbon emissions reduction potential indices alongside typological characteristics. The outcomes of this study offer strategic guidance to the government of Fujian Province in crafting suitable carbon emissions reduction strategies and in devising targeted action plans aimed at achieving the twin goals of 'carbon peaking' and 'carbon neutrality'.

Keywords: agricultural marginal abatement costs; reduction potential index modelling; equity and efficiency indices

Received: September 30, 2023; Revised: February 20, 2024; Accepted: March 7, 2024; Prepublished online: March 25, 2024; Published: March 26, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Ye J, Xie R, Deng X, Lin M, Chen Y, Lin K, Yang J. Assessment of agricultural carbon emissions reduction potential and optimisation pathways based on a framework of equity and efficiency principles: Evidence from Fujian Province in China. Agric. Econ. - Czech. 2024;70(3):125-136. doi: 10.17221/329/2023-AGRICECON.
Download citation

References

  1. Ao Z., Fei R., Jiang H., Cui L., Zhu Y. (2023): How can China achieve its goal of peaking carbon emissions at minimal cost? A research perspective from shadow price and optimal allocation of carbon emissions. Journal of Environmental Management, 325 (Part A): 116458. Go to original source... Go to PubMed...
  2. Bauman Y., Lee M., Seeley K. (2008): Does technological innovation really reduce marginal abatement costs? Some theory, algebraic evidence, and policy implications. Environmental and Resource Economics, 40: 507-527. Go to original source...
  3. Bekun F.V. (2024): Race to carbon neutrality in South Africa: What role does environmental technological innovation play? Applied Energy, 354 (Part A): 122212. Go to original source...
  4. Chen M. (2019): Research on the efficiency of China's inter-provincial financial support to agriculture expenditure and influencing factors [J]. Contemporary Rural Finance and Economics, 2019: 2-10.
  5. Chen Y., Li M., Su K., Li X. (2019): Spatial-temporal characteristics of the driving factors of agricultural carbon emissions: Empirical evidence from Fujian, China. Energies, 12: 3102. Go to original source...
  6. Cui Y.F., Wang J.F. (2016): Spatial econometric analysis of agricultural input-output elasticity in counties and districts of Hebei Province. Shandong Agricultural Sciences, 48: 167-172.
  7. Du L.J., Yao B., Du M.Q. (2022): Research on the contribution and driving role of science and technology innovation to the shadow price of carbon emissions - Based on the analysis of panel data of Beijing-Tianjin-Hebei region from 2002 to 2020. Price: Theory & Practice, 2022: 48-51.
  8. Elahi E., Zhang Z., Khalid Z., Xu H.Y. (2022): Application of an artificial neural network to optimise energy inputs: An energy- and cost-saving strategy for commercial poultry farms. Energy, 244: 123169. Go to original source...
  9. Grubb M. (1990): The greenhouse effect: Negotiating targets. International Affairs, 66: 67-89. Go to original source...
  10. He Y., Cheng X., Wang F., Cheng Y. (2020): Spatial correlation of China's agricultural greenhouse gas emissions: A technology spillover perspective. Natural Hazards, 104: 2561-2590. Go to original source...
  11. He W., Yang Y., Gu W. (2022): A comparative analysis of China's provincial carbon emission allowances allocation schemes by 2030: A resource misallocation perspective. Journal of Cleaner Production, 361: 132192. Go to original source...
  12. Klemun M.M., Edwards M.R., Trancik J.E. (2020): Research priorities for supporting subnational climate policies. Wiley Interdisciplinary Reviews: Climate Change, 11: e646. Go to original source...
  13. Li Y., Zhu X.Y. (2014): The role of talent, capital, science and technology inputs on rural economy - Taking Qingdao City as an example. Journal of Anhui Agricultural Sciences, 42: 2148-2150.
  14. Li W., Ma H., Lu C. (2023): Research on the economic abatement pathway of carbon peaking in China based on marginal abatement costs and abatement tasks allocation. Environmental Science and Pollution Research International, 30: 7956-7972. Go to original source... Go to PubMed...
  15. Liu J.Y., Feng C. (2018): Marginal abatement costs of carbon dioxide emissions and its influencing factors: A global perspective. Journal of Cleaner Production, 170: 1433-1450. Go to original source...
  16. Ma C., Hailu A., You C. (2019): A critical review of distance function based economic research on China's marginal abatement cost of carbon dioxide emissions. Energy Economics, 84: 104533. Go to original source...
  17. Nimkar I., Singh A., Unnikrishnan S., Naik N.S. (2015): Potential of GHG emission reduction from agriculture sector. International Journal of Global Warming, 8: 31-45. Go to original source...
  18. Shi P., Li L., Wu Y., Zhang Y., Lu Z. (2023): Research on carbon emission quota allocation scheme under 'Double Carbon' target: A case study of industrial sector in Henan Province. Environmental Science and Pollution Research, 30: 30039. Go to original source...
  19. Tang K., Ma C. (2022): The cost-effectiveness of agricultural greenhouse gas reduction under diverse carbon policies in China. China Agricultural Economic Review, 14: 758-773. Go to original source...
  20. van Veelen B. (2021): Cash cows? Assembling low-carbon agriculture through green finance. Geoforum, 118: 130-139. Go to original source...
  21. von Wright T., Kaseva J., Kahiluoto H. (2022): Needs must? Fair allocation of personal carbon allowances in mobility. Ecological Economics, 200: 107491. Go to original source...
  22. Wei C., Ni J., Du L. (2012): Regional allocation of carbon dioxide abatement in China. China Economic Review, 23: 552-565. Go to original source...
  23. Wu X., Zhang J., You L. (2018): Marginal abatement cost of agricultural carbon emissions in China: 1993-2015. China Agricultural Economic Review, 10: 558-571. Go to original source...
  24. Xia M., Zeng D., Huang Q., Chen X. (2022): Coupling coordination and spatiotemporal dynamic evolution between agricultural carbon emissions and agricultural modernization in China 2010-2020. Agriculture, 12: 1809. Go to original source...
  25. Yang X., Jia Z., Yang Z., Yuan X. (2021): The effects of technological factors on carbon emissions from various sectors in China - A spatial perspective. Journal of Cleaner Production, 301: 126949. Go to original source...
  26. Yang F., Han Y.H., Wei X., Bi H.T., Wang X.Y. (2023): (Estimation of agricultural greenhouse gas emissions and emission reduction potential of Beijing during the 14th Five-Year Plan period under the background of 'Carbon Peak and Neutrality'). Huan Jing Ke Xue, 44: 5456-5463. (in Chinese)
  27. Zhou P., Zhou X., Fan L.W. (2014): On estimating shadow prices of undesirable outputs with efficiency models: A literature review. Applied Energy, 130: 799-806. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.