Agric. Econ. - Czech, 2021, 67(6):220-226 | DOI: 10.17221/70/2020-AGRICECON
Finite automata model for leaf disease classificationOriginal Paper
- 1 Department of Computer Science and Engineering, Nehru Institute of Engineering and Technology, Anna University, Tamilnadu, India
- 2 Department of Computer Science and Engineering, Anna University Regional Campus, Coimbatore, Tamilnadu, India
In this modern era, the detection of plant disease plays a vital role in the sustainability of agricultural ecosystem. Today, India being second in farming, well-timed information related to crop is still questioning. Indian Government's farmer portal is available for pesticides, fertilisers, and farm machinery. To alleviate this problem, the paper describes a model to validate the leaf image, predicting leaf disease and notifying the farmer in an effective way on the harvest failure to stabilise farming income. For specific consideration on the validation, a data set library with predefined, uniformly scaled, regular image patterns of leaf disease, is maintained. The research suggests that farmers utilising the model can predict the breakout of leaf disease predominantly acquiring 100% yield.
Keywords: agriculture; automata model; image processing; plant disease; segmentation
Published: June 25, 2021 Show citation
References
- Anand H.K., Ashwin Patil R.K. (2012): Applying image processing technique to detect plant diseases. International Journal of Modern Engineering Research (IJMER), 2: 3661-3664.
- Gusavac B.A., Stanojevic M., Cangalovic M. (2019): Optimal treatment of agricultural land - Special multi-depot vehicle routing problem. Agricultural Economics - Czech, 65: 569-578.
Go to original source...
- Rao A., Kulkarni S.B. (2020): A hybrid approach for plant leaf disease detection and classification using digital image processing methods. International Journal of Electrical Engineering and Education (IJEEE): 1-19.
Go to original source...
- Ghaiwat S.N., Arora P. (2014): Detection and classification of plant leaf diseases using image processing techniques: A review. International Journal of Recent Advances in Engineering and Technology, 2: 2347-2812.
- Das R., Pooja V., Kanchana V. (2017): Identification of plant leaf diseases using image processing techniques. In: Proceedings of the 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), Chennai, Tamil Nadu, India, April 7-8, 2017: 130-133.
Go to original source...
- Durand F., Paris S. (2006): A fast approximation of the bilateral filter using a signal processing approach. In: 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006: 568-580.
Go to original source...
- Haiguang W., Guanlin L., Zhanhong M., Xiaolong L. (2012): Image recognition of plant diseases based on back propagation networks. In: 5th International Congress on Image and Signal Processing (CISP), Chongqing, China, Oct 16-18, 2012: 894-900.
Go to original source...
- Hoang V. (2018): Assessing the agricultural trade complementarity of the Association of Southeast Asian Nations countries. Agricultural Economics - Czech, 64: 464-475.
Go to original source...
- Jayme G., Barbedo A. (2013): Digital image processing techniques for detecting, quantifying and classifying plant diseases. SpringerPlus, 2: 1-12.
Go to original source...
Go to PubMed...
- Padmavathi K., Thangadurai K. (2016): Implementation of RGB and grayscale images in plant leaves disease detection - Comparative study. Indian Journal of Science and Technology, 9: 1-6.
Go to original source...
- Kornprobst P., Tumblin J., Paris S., Durand F. (2008): Bilateral filtering: Theory and applications. Computer Graphics and Vision, 4: 1-73.
Go to original source...
- Kung Ch.-Ch. (2018): A dynamic framework of sustainable development in agriculture and bioenergy. Agricultural Economics - Czech, 64: 445-455.
Go to original source...
- Palanivel N., Lavanya S., Devapriya E., Vinitha M. (2017): PCA and RF: An automatic plant leaf disease detection using texture, shape and color features. International Journal of Engineering Applied Sciences and Technology, 2: 120-125.
- Steiner P.W. (1990): Predicting apple blossom infections by Erwinia amylovora using the maryblyt model. Acta Horticulturae, 273: 139-148.
Go to original source...
- Landge P.S., Patil S.A., Khot D.S., Otari O.D., Malavkar U.G. (2013): Automatic detection and classification of plant disease through image processing. International Journal of Advanced Research in Computer Science and Software Engineering, 3: 798-801.
- Dhaygude S.B., Kumbhar N.P. (2013): Agricultural plant leaf disease detection using image processing. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2: 598-602.
- Mohanty S.P., Hughes D.P., Salathé M. (2016): Using deep learning for image-based plant disease detection. Frontiers in Plant Science, 7: 1-10.
Go to original source...
Go to PubMed...
- Alex S.A., Kanavalli A. (2019): Intelligent computational techniques for crops yield prediction and fertilizer management over big data environment. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8: 3521-3526.
Go to original source...
- Smita N., Niket A. (2013): Advances in image processing for detection of plant disease. International Journal of Application or Innovation in Engineering & Management, 2: 168-175.
- Yanuarti R., Aji J.M.M., Rondhi M. (2019): Risk aversion level influence on farmer's decision to participate in crop insurance: A review. Agricultural Economics - Czech, 65: 481-489.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.