Agric. Econ. - Czech, 2021, 67(2):60-69 | DOI: 10.17221/411/2020-AGRICECON

How to combine precious metals with corn in a risk-minimizing two-asset portfolio?Original Paper

Dejan Živkov*,1, Petra Balaban2, Boris Kuzman3
1 Novi Sad School of Business, University of Novi Sad, Novi Sad, Serbia
2 Technical School of Professional Studies, University of Novi Sad, Novi Sad, Serbia
3 Institute of Agricultural Economics, Belgrade, Serbia

This paper tries to find out which precious metal futures are the best hedging tools for corn spot commodity, taking into account three different risk measures - variance (Var), value at risk (VaR), and conditional value at risk (CVaR). For computation purposes, we use an optimal dynamic conditional correlation (DCC) specification for every considered pair. Our findings indicate that portfolio with gold outperforms the other three precious metals (silver, platinum, and palladium) with respect to all three risk metrics. The reason for such findings is two-fold. First, gold has the lowest average dynamic correlation with corn (below 11%), and gold also has the lowest average risk of all precious metals. The second-best combination is corn-platinum, whereas the corn-silver pair gives the worst hedging results. This happens because silver has the highest average dynamic correlation with corn (14.5%), but more importantly, silver is the riskiest commodity, which makes this asset unsuitable for combining with corn. According to the results, the ratio between corn and gold in a two-asset portfolio should be about 27 : 73.

Keywords: different risk measures; dynamic correlations; dynamic weights

Published: February 26, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Živkov D, Balaban P, Kuzman B. How to combine precious metals with corn in a risk-minimizing two-asset portfolio? Agric. Econ. - Czech. 2021;67(2):60-69. doi: 10.17221/411/2020-AGRICECON.
Download citation

References

  1. Bala D.A., Takimoto T. (2017): Stock markets volatility spillovers during financial crises: A DCC-MGARCH with skewed-t density approach. Borsa Istanbul Review, 17: 25-48. Go to original source...
  2. Bessler W., Wolff D. (2015): Do commodities add value in multi-asset portfolios? An out-of-sample analysis for different investment strategies. Journal of Banking and Finance, 60: 1-20. Go to original source...
  3. Cheng L., Anderson C.L. (2017): Too conservative to hedge: How much does a corn ethanol facility lose? International Journal of Production Economics, 193: 654-662. Go to original source...
  4. Dahlgran R.A., Gupta R. (2019): Corn-crush hedging - Does location matter? In: Proceedings of the NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management, Minneapolis, April 15-16, 2019: 1-20.
  5. Dajčman S., Alenka K. (2011): A comparative DCC-GARCH and rolling wavelet correlation analysis of interdependence between the Slovenian and European stock markets. Economic Computation and Economic Cybernetics Studies and Research, 45: 99-118.
  6. Engle R.E. (2002): Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business and Economic Statistics, 20: 339-350. Go to original source...
  7. Fakari B., Farsi M.M., Kojouri M. (2013): Determining fluctuations and cycles of corn price in Iran. Agricultural Economics - Czech, 59: 373-380. Go to original source...
  8. Hammoudeh S., Santos P.A., Al-Hassan A. (2013): Downside risk management and VaR-based optimal portfolios for precious metals, oil and stocks. North American Journal of Economics and Finance, 25: 318-334. Go to original source...
  9. He Y., Nakajima T., Hamorri S. (2020): Can BRICS's currency be a hedge or a safe haven for energy portfolio? An evidence from vine copula approach. Singapore Economic Review, 65: 805-836. Go to original source...
  10. Hernandez J.A., Shahzad S.J.H., Uddin G.S., Kang S.H. (2019): Can agricultural and precious metal commodities diversify and hedge extreme downside and upside oil market risk? An extreme quantile approach. Resources Policy, 62: 588-601. Go to original source...
  11. Jiang Y., Fu Y., Weihua R. (2019): Risk spillovers and portfolio management between precious metal and BRICS stock markets. Physica A: Statistical Mechanics and Its Applications, 534: 1-18. Go to original source...
  12. Kang S.H., Yoon S-M. (2019): Dynamic correlation and volatility spillovers across Chinese stock and commodity futures markets. International Journal of Finance and Economics, 25: 261-273. Go to original source...
  13. Khalfaoui R., Boutahar M., Boubaker H. (2015): Analyzing volatility spillovers and hedging between oil and stock markets: Evidence from wavelet analysis. Energy Economics, 49: 540-549. Go to original source...
  14. Kroner K.F., Ng V.K. (1998): Modeling asymmetric comovements of asset returns. Review of Financial Studies, 11: 817-844. Go to original source...
  15. Kučerová Z., Poměnková J. (2015): Financial and trade integration of selected EU regions: Dynamic correlation and wavelet approach. Ekonomicky Časopis/Journal of Economics, 63: 686-704.
  16. Mansor I.H. (2011): Financial market risk and gold investment in an emerging market: The case of Malaysia. Romanian Journal of Economic Forecasting, 14: 79-89.
  17. Mensi W., Tiwari A., Bouri E., Roubaud D., Al-Yahyaee K.H. (2017): The dependence structure across oil, wheat, and corn: A wavelet-based copula approach using implied volatility indexes. Energy Economics, 66: 122-139. Go to original source...
  18. Mensi W., Hammoudeh S., Rehman M.U., Al-Maadid A.A.S., Kang S.H. (2020): Dynamic risk spillovers and portfolio risk management between precious metals and global foreign exchange markets. North American Journal of Economics and Finance, 51: 1-19. Go to original source...
  19. Mirović V., Živkov D., Njegić J. (2017): Construction of commodity portfolio and its hedge effectiveness gauging - revisiting DCC models. Finance a úvěr - Czech Journal of Economics and Finance, 67: 396-422.
  20. Nguyen D.K., Sensoy A., Sousa R.M., Uddin G.S. (2020): U.S. equity and commodity futures markets: Hedging or financialization? Energy Economics, 86: 1-15. Go to original source...
  21. Park S.Y., Jei S.Y. (2010): Estimation and hedging effectiveness of time-varying hedge ratio: Flexible bivariate GARCH approaches. Journal of Futures Markets, 30: 71-99. Go to original source...
  22. Stooq (2020): Stooq.com Database. [Dataset]. Available at https://stooq.com/ (accessed Sept, 2020).
  23. Ulusoy V., Onbirler Ö.Ü. (2017): Marginal speculation and hedging in commodity markets. Finance Research Letters, 23: 269-282. Go to original source...
  24. Wu F., Guan Z., Myers R. (2011): Volatility spillover effects and cross hedging in corn and crude oil futures. Journal of Futures Markets, 31: 1052-1075. Go to original source...
  25. Živkov D., Njegić J., Zakić V. (2020): Empirical analysis of oil risk-minimizing portfolios - DCC-EGARCH-MODWT approach. Journal of Risk, 22: 65-91.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.