Agric. Econ. - Czech, 2020, 66(11):510-518 | DOI: 10.17221/290/2020-AGRICECON

Decoupling of carbon emissions from agricultural land utilisation from economic growth in ChinaCase Study

Min Zhou ORCID...*,1, Bixia Hu2
1 School of Public Management, Liaoning University, Shenyang, China
2 College of Public Administration, Huazhong University of Science and Technology, Wuhan, China

China, as a populous and agricultural country, is confronted with a tremendous challenge involving the balance between agricultural economic growth and carbon emissions from agricultural land utilisation (CEALU). This study calculates the total CEALU in the 31 provinces of mainland China and uses the Tapio model to analyse the decoupling of CEALU from economic growth during the period 2000-2017. The results are shown as follows: (i) The CEALU in China has substantially increased, and there are obvious spatial discrepancies in CEALU from the regional and provincial perspectives. (ii) The decoupling of CEALU from economic growth at the national level shows a progressive improvement. The decoupling trends show significant spatial disparities at the regional level due to different natural and economic conditions. (iii) There is an increase in the numbers of provinces, which have achieved economic growth with the reduction of CEALU. Policymakers should attach more importance to the relationship between CEALU and economic growth, and relevant policies should be adapted to local natural and economic conditions.

Keywords: agricultural sector; land use; national bureau of statistics; sustainability; Tapio model

Published: November 30, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zhou M, Hu B. Decoupling of carbon emissions from agricultural land utilisation from economic growth in China. Agric. Econ. - Czech. 2020;66(11):510-518. doi: 10.17221/290/2020-AGRICECON.
Download citation

References

  1. Azad H., Arooj B., Muhammad I.H. (2020): Impact of agricultural land use and economic growth on nitrous oxide emissions: Evidence from developed and developing countries. Science of The Total Environment, 741: 140421. Go to original source... Go to PubMed...
  2. Chen B., Yang Q., Li J., Chen G. (2017): Decoupling analysis on energy consumption, embodied GHG emissions and economic growth - The case study of Macao. Renewable and Sustainable Energy Reviews, 67: 662-672. Go to original source...
  3. Chen Q.R., Xie H.L. (2019): Temporal-spatial differentiation and optimization analysis of cultivated land green utilization efficiency in China. Land, 8: 158. Go to original source...
  4. Chen Y.H., Li M.J., Su K., Li X.Y. (2019): Spatial-temporal characteristics of the driving factors of agricultural carbon emissions: Empirical evidence from Fujian, China. Energies, 12: 3102. Go to original source...
  5. Huang X.Q., Xu X.C., Wang Q.Q., Zhang L., Cao X., Chen L.H. (2019): Assessment of agricultural carbon emissions and their spatiotemporal changes in China, 1997-2016. International Journal of environmental Research and Public Health, 16: 3105. Go to original source... Go to PubMed...
  6. Johnson J.M.F., Franzluebbers A.J., Weyers S.L., Reicosky D.C. (2007): Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution, 150: 107-124. Go to original source... Go to PubMed...
  7. Li Z.W., Zheng X.G. (2011): Study on relationship between Sichuan agricultural carbon dioxide emissions and agricultural economic growth. Energy Procedia, 5: 1073-1077. Go to original source...
  8. Liu L.H., Xin H.P. (2014): Research on spatial-temporal characteristics of agricultural carbon emission in Guangdong province and the relationship with economic growth. Advanced Materials Research, 8: 1010-1012. Go to original source...
  9. Liu Y.S., Zou L.L., Wang Y.S. (2020): Spatial-temporal characteristics and influencing factors of agricultural ecoefficiency in China in recent 40 years. Land Use Policy, 97: 104794. Go to original source...
  10. Lu X.H., Kuang B., Li J., Han J., Zhang Z. (2018): Dynamic evolution of regional discrepancies in carbon emissions from agricultural land utilisation: Evidence from Chinese provincial data. Sustainability, 10: 552. Go to original source...
  11. Ma M.D., Cai W.G. (2019): Do commercial building sectorderived carbon emissions decouple from the economic growth in Tertiary Industry? A case study of four municipalities in China. Science of The Total Environment, 650: 822-834. Go to original source... Go to PubMed...
  12. Norse D. (2012): Low carbon agriculture: Objectives and policy pathways. Environmental Development, 1: 25-39. Go to original source...
  13. National Bureau of Statistics (2001-2018): China Rural Statistical Yearbook. [Dataset]. Available at http://www.stats.gov.cn/english/Statisticaldata/AnnualData/ (accessed Jan 25, 2020).
  14. Tapio P. (2005): Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transport Policy, 12: 137-151. Go to original source...
  15. Wang L., Vo X.V., Shahbaz M., Ak A. (2020): Globalisation and carbon emissions: Is there any role of agriculture value-added, financial development, and natural resource rent in the aftermath of COP21? Journal of Environmental Management, 15: 1-8. Go to original source... Go to PubMed...
  16. Wang Q., Su M. (2019): The effects of urbanisation and industrialisation on decoupling economic growth from carbon emission - A case study of China. Sustainable Cities and Society, 51: 101758. Go to original source...
  17. Wang Q., Zhang F.Y. (2020): Does increasing investment in research and development promote economic growth decoupling from carbon emission growth? An empirical analysis of BRICS countries. Journal of Cleaner Production, 252: 119853. Go to original source...
  18. West T.O., Marland G.A. (2002): Synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agriculture, Ecosystems and Environment, 91: 217-232. Go to original source...
  19. World Bank (2018): World Development Indicators: Agricultural Methane Emissions. [Dataset]. Available at https://data.worldbank.org/indicator/EN.ATM.METH.KT.CE (accessed Jan 20, 2020).
  20. Wu Y., Tam V.W.T., Shuai C.Y., Shen L.Y., Zhang Y., Liao S.J. (2019): Decoupling China's economic growth from carbon emissions: Empirical studies from 30 Chinese provinces (2001-2015). Science of The Total Environment, 656: 576-588. Go to original source... Go to PubMed...
  21. Xiong C.H., Yang D.G., Hua J.W., Zhao Y.N. (2016): The relationship between agricultural carbon emissions and agricultural economic growth and policy recommendations of a low-carbon agriculture economy. Polish Journal of Environmental Studies, 25: 2187-2195. Go to original source...
  22. Xu B., Lin B.Q. (2017): Factors affecting CO2 emissions in China's agriculture sector: Evidence from geographically weighted regression model. Energy Policy, 104: 404-414. Go to original source...
  23. Zhang L., Pang J.X., Chen X.P., Lu Z.M.N. (2019): Carbon emissions, energy consumption and economic growth: Evidence from the agricultural sector of China's main grain-producing areas. Science of the Total Environment, 665: 1017-1025. Go to original source... Go to PubMed...
  24. Zhao R.Q., Liu Y., Tian M.M., Ding M.L., Cao L.H., Zhang Z.P., Chuai X.W., Xiao L.G., Yao L.G. (2018): Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus. Land Use Policy, 72: 480-492. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.