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Abstract: Contract farming is regarded as an effective strategy for smallholder farmers in developing countries to en-
hance their agricultural competitiveness. However, limited research exists on its potential to promote green, sustain-
able development. This paper investigates the impact of contract farming participation on farmers' green technology 
efficiency using data from a sample of 627 vegetable growers in Shandong, China and employs the propensity score 
matching method. Our findings are as follows: i) Under the counterfactual assumption, participation in contract farm-
ing increases green technology efficiency from 0.560 to 0.614. The efficiency of contract production bases, ranked from 
highest to lowest, is as follows: self-owned base, stock-sharing base, and contractual base. ii) The provision of produc-
tive services serves as a significant mediating factor in enhancing green technology efficiency, with a more substantial 
impact than issuing planned instructions. iii) Increasing purchase prices, as an effective means of providing motiva-
tional incentives, significantly amplifies the effect of contract farming on green technology efficiency in self-owned and 
stock-sharing bases. As organisational models evolve toward greater integration, the enhancing effect of price incentives 
on green technology efficiency strengthens. This study concludes with several public policy and agricultural manage-
ment recommendations.
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Contract farming is regarded as an effective strategy 
for enhancing the productivity of  smallholder farm-
ers in developing countries (Minot and Sawyer 2016; 
Adam and Alelegn 2023). As a  common institutional 
arrangement for agricultural industrialisation, it serves 
as an intermediary form of vertical coordination (Patel 
2022; Kollenda et al. 2024). Leading enterprises initi-
ate contract farming by  establishing agreements that 
specify prices, quantities, timing, and product attrib-
utes, thereby purchasing agricultural products from 

contract farmers (Chen and Chen 2021). Farmers pro-
duce according to these contract requirements, ensur-
ing a  consistent supply of  high-quality raw materials 
for agribusinesses (Bellemare and Novak 2017). Enter-
prises typically provide seeds, fertilisers, and technical 
assistance – along with guaranteed prices at  harvest 
– addressing various productivity constraints faced 
by  smallholders (Swinnen and Maertens 2007). Con-
sequently, contract farming is widely regarded as a key 
tool for strengthening global food security and improv-
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ing farmers' income in  developing countries (Abebe 
et al. 2013; Ton et al. 2018).

The existing empirical literature has primarily fo-
cused on  two dimensions of  contract farming. First, 
it examines the impact of contract farming on house-
hold welfare, particularly in  terms of  economic per-
formance. Research consistently shows that contract 
farming positively influences farm income (Bezabeh 
et al. 2020; Wu et al. 2020; Selorm et al. 2023) and re-
duces production risks (Kumar and Kumar 2008; Abadi 
et al. 2024). Second, studies assess the effect of contract 
farming on production performance, especially techni-
cal efficiency. Some studies indicate that participating 
in  contract farming can enhance technological effi-
ciency (Alulu et al. 2021; Rabia et al. 2023; Hailu and 
Mezgebo 2024), while others find that non-contract 
farmers may be more efficient (Dube and Mugwagwa 
2017; Kaur and Singla 2024). Additionally, some stud-
ies report no  significant difference in  technical effi-
ciency between contract farmers and nonparticipants 
(Mishra et al. 2018).

These insights lead to two conclusions. First, while 
the literature on contract farming's economic impacts 
is extensive, limited research has focused on its envi-
ronmental effects and its role in sustainable agricul-
tural practices. A  few studies suggest that contract 
farming can help some farmers adopt sustainable 
technologies (Ren et al. 2021; Weituschat et al. 2023; 
Zhang et al. 2023). Second, the extent to which con-
tract participation improves agricultural efficiency 
remains unclear, with mixed results in the literature. 
Thus, the impact of contract farming on green tech-
nology efficiency is a  largely unexplored area, as  the 
environmental attributes of agricultural products are 
more challenging to assess than their income effects. 
Understanding this relationship is essential for opti-
mising contract schemes that benefit both parties and 
promote sustainable practices.

In China, vegetable production is a significant rural 
economic industry, facing challenges which under-
mine its competitiveness, such as excessive fertiliser 
and pesticide use. As market demand for high-quality 
agricultural products rises, it is crucial to shift vegeta-
ble production from quantity-oriented to quality- and 
benefit-oriented. Given this context, this study de-
velops a framework to analyse the impact of contract 
farming on green technology efficiency and employs 
micro-level data from 627 vegetable farmers in Shan-
dong's vegetable industry to  investigate the effects 
of various contract production bases on green tech-
nology efficiency.

The study presents several innovations: it explores 
the often-overlooked role of contract farming in en-
hancing green technology efficiency and clarifies its 
influence through both farmers' internal capabilities 
and external incentives. Additionally, it  categorises 
contract farming into three types of production bases 
for comparative analysis, highlighting the evolution 
of  organisational models in  promoting green prac-
tices. The significance of this study lies in identifying 
effective pathways for improving green technology 
efficiency, reducing unnecessary fertiliser use, and 
protecting farmland environments. Furthermore, 
the comparative analysis of  different organisational 
models provides guidance for agricultural enterprises 
in  designing effective contract farming frameworks. 
Finally, this case study of smallholder vegetable farm-
ers in  Shandong offers valuable insights for similar 
agricultural producers.

Theoretical framework and hypotheses
Contract farming production bases. Contract 

farming in the vegetable industry is defined as an ag-
ricultural industrialisation model where farmers and 
enterprises sign pre-production purchase contracts. 
Farmers organise their production according to  the 
contracts, while enterprises or  intermediaries pur-
chase the products. In  Shandong, contract farming 
primarily occurs through the establishment of  pro-
duction bases, which can be  categorised into three 
types (Figure 1).

First, the contractual base model, which involves 
long-term, fixed-contract collaborations between 
farmers and enterprises. The contracts specify vegeta-
ble prices, quantities, quality standards, and delivery 
schedules, outlining the rights and obligations of both 
parties (Prowse 2012; Chen and Chen 2021). Enterpris-
es secure stable access to raw materials while provid-
ing some pre-production and in-production services 
to  farmers. Farmers in  the base fulfil the enterprise's 
orders and produce according to  specified standards. 
However, this model's inherent independence and 
flexibility create weaknesses in contract enforcement, 
leading to a  significant 'public domain' for opportun-
istic behaviour and higher transaction costs related 
to mutual monitoring.

Second, the stock-sharing base model, which typi-
cally involves cooperation between enterprises and 
cooperatives. Farmers form cooperatives by  invest-
ing in  land, and these cooperatives, along with en-
terprises, build production bases. Cooperatives 
manage production and negotiate with enterprises, 
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while farmers share profits based on  their land in-
vestments. This model fosters closer cooperation and 
mutual interests, forming a hybrid contract that com-
bines commodity and factor contracts. By integrating 
market incentives with reduced transaction costs, 
it motivates farmers to meet enterprise requirements 
(Geng et al. 2023).

Third, the self-owned base model, in which the enter-
prise leases land from farmers, obtaining operational 
rights to establish a high-quality vegetable production 
base. The enterprise then subleases the land to mul-
tiple farming households for cultivation, providing 
uniform production materials and technical standards 
throughout the farming process. In this model, farm-
ers become production inputs, with their income tied 
to the yield and quality of contracted vegetables rather 
than market prices. This model integrates different 
links in the industrial chain – extending the industrial 
chain's reach – making the self-owned base the most 
integrated base model (Jin et al. 2024).

Promoting green technology efficiency in  con-
tract farming. Producing green vegetables involves 
various modern elements, including technology, 
machinery, skilled labour, and information, making 
it  a  technology-intensive production process. This 
raises production thresholds and market risks, lim-
iting individual farmers' capacity for independent 
green production (Adnan et  al.  2020). Farmers face 
constraints such as economic status, lack of knowl-
edge, and limited risk management capabilities, 
which hinder their ability to enhance green technol-
ogy efficiency (Li et  al.  2021). Additionally, without 
adequate sales channels, farmers cannot secure rea-
sonable returns on  high-quality production (Staatz 
1987), reducing their motivation to improve efficien-

cy. Thus, this study examines the impact of contract 
farming on green technology efficiency from the dual 
perspectives of capability and motivation.

Capability enhancement pathways. In  contract 
farming, enterprises enhance farmers' green technol-
ogy efficiency through two primary methods.

First, issuing planned instructions. Enterprises 
provide scientific and standardised vegetable plant-
ing plans and clarify production requirements based 
on local conditions, optimising workflows (Némethová 
et al. 2017; Liu et al. 2019). These plans include plant-
ing varieties, material specifications, dosage, field man-
agement schedules, technical requirements, and yield 
expectations. Planned instructions serve as  the foun-
dation of  contract management, directly determining 
green technology efficiency.

Second, providing production services. Enter-
prises or cooperatives exert partial control over the 
production process by  offering socialised services 
for critical stages. They introduce green produc-
tion elements and capital into farmers' processes 
(Xu  et  al.  2022), facilitating effective management 
and quality control, thus ensuring product quality. 
Technical personnel provide advanced production 
technology support and real-time agricultural ad-
vice, lowering barriers to  green production (Ruml 
and Qaim 2021). Additionally, field management 
services, such as soil testing and pest control, direct-
ly influence fertiliser and pesticide use, impacting 
overall output levels (Cheng et al. 2022). Therefore, 
we propose the following hypothesis:

H1: Both the issuance of planned instructions and 
the provision of production services by the enter-
prises effectively improve green technology effi-
ciency in contract farming.

Contractural base 
model

Stock-sharing base

Self-owned base

Contract farming

Capability enhancement 
pathways

Issuing planned 
instructions

Providing production 
services

Empowerment pathway

Green technology 
e�ciency 

Increase purchase price

Figure 1. Research conceptual framework

Source: Authors' own elaboration
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Empowerment pathways. Farmers are driven 
to maximise economic benefits, making price incen-
tives crucial for transitioning to  green production. 
Contracts often include premium prices for high-
quality products, motivating farmers to  adjust their 
production behaviours and enhance green technol-
ogy efficiency (Jin et  al.  2024). However, chemicals 
are trust-based products, and contracts involving 
these elements can lead to  opportunistic behaviour. 
Farmers may believe that higher chemical applica-
tion rates yield better results, leading them to engage 
in speculative practices when faced with price incen-
tives, potentially undermining production standards. 
Thus, if  economic incentives exist without adequate 
production supervision, they may exacerbate oppor-
tunistic tendencies.

Therefore, we propose the following hypothesis: 
H2: Purchase prices play a positive moderating role 
in  enhancing green technology efficiency in  con-
tract farming, but the moderating effect varies 
among different production bases.

MATERIAL AND METHODS

Data collection and analysis
The data for this study were collected through 

a  micro-level survey conducted by  the research 
team in  Shandong in  2022. This coastal province 
in  East China borders the Bohai Sea and the Yellow 
Sea (34°22.9'–38°24.01'N, 114°47.5'–122°42.3'E) and 

is a major vegetable-producing area. Shandong actively 
implements various forms of contract farming to en-
hance the vegetable industry, providing empirical sup-
port for our study and favourable conditions for data 
collection. The selected sample areas are based on the 
distribution of  major vegetable cultivation regions 
in Shandong, including Jiaozhou in Qingdao, Zhucheng 
in  Shouguang, and Jiaxiang in  Weifang, as  well as  Ji-
axiang County in  Jining. We  employed a  stratified 
sampling method, categorising the sample counties 
(districts) into high, medium, and low production vol-
ume groups to ensure representation from areas with 
varying levels of vegetable cultivation and environmen-
tal characteristics. From each group, two townships 
(or towns) were randomly selected, and within each 
township (or town), 20–30  vegetable-growing house-
holds were randomly chosen for household surveys. 
Vegetable-growing households were selected as  the 
research subjects because they represent the main ac-
tors in contract farming while retaining characteristics 
of  traditional farming. Questionnaires were adminis-
tered through oral interviews with farmers and filled 
out by  surveyors. A  total of  666 questionnaires were 
collected, of which 627 were valid.

Based on  the descriptive analysis (Table  1 and Ta-
ble  2), the household heads of  the sample farms ex-
hibited characteristics of  ageing, low education, risk 
aversion, and significant differences in  agricultural 
production scale. Among all the samples, a  total 
of  399  households participated in  contract farming, 

Table 1. Basic characteristics of sample farm households (continuous variable)

Variable name Variable definition Mean SD Min. Max. 

Head of household 
endowment age age of the head of household (years) 50.08 8.14 20.00 72.00

Participation in  
technical training

annual average number of agricultural  
technical training sessions attended 3.72 1.75 1.00 8.00

Share of agricultural 
income 

proportion of agricultural income  
to total family income (%) 87.35 0.17 0.05 1.00

Social network size number of relatives and friends who  
maintained in contact with the family 26.84 12.84 2.00 55.00

Production scale vegetable cultivation area (ha) 12.56 54.24 1.13 80.04

Degree of land  
fragmentation average size of contiguous plots (ha) 0.59 0.17 0.20 1.00

Higher purchase price percentage of the purchase price higher than the 
local vegetable average selling price last year (%) 12.85 11.94 –43.00 80.00

SD – standard deviation
Source: Author's own elaboration
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accounting for 63.63% of  the sample. Among them, 
185 households (29.51%) are involved in  the contrac-
tual base, 157 households (25.04%) are engaged in the 
stock-sharing base, and 57 households (9.09%) are en-
gaged in the self-owned base.

The primary vegetable varieties cultivated include 
field tomatoes, field cucumbers, field eggplants, field 
radishes, and field string beans, totalling five varieties. 
Key input factors for production are seeds, fertilisers, 
pesticides, machinery, labour (both hired and family), 
and plastic film. The average vegetable yield for sample 
households is 4 207.14 kg/mu (Table 3). Average inputs 
include USD 401.85 per ha for seeds, 1 862.55  kg/ha 
for fertilisers, USD 190.50 per ha for pesticides, USD 
281.25 per ha for machinery, 396.15 person-days/ha 
for labour, and 28.05 kg/ha for plastic film. Due to sig-
nificant differences in  the input–output performance 
across the five types of vegetable varieties, the standard 
error of the input–output ratios are relatively large.

Calculation of green technology efficiency
In this study, agricultural green technology efficien-

cy refers to  the calculation of  production efficiency, 
considering factors contributing to  environmental 
pollution. Improving agricultural green technology 
efficiency involves minimising resource consump-
tion and environmental pollution while maximising 
beneficial output under a given combination of input 
factors (Yang et al. 2022). Green technology efficiency 
values range between 0 and 1, with values closer to 1 

indicating that a production unit is nearer to the en-
vironmental production frontier. This study employs 
the non-radial and non-angular slacks-based meas-
ure (SBM) data envelopment analysis (DEA) model 
to  measure green technology efficiency, effectively 
addressing the limitations of  the radial DEA model, 
which cannot measure inefficiency without slack vari-
ables and may introduce biases from radial and angu-
lar selections (Tone 2021).

The SBM-DEA model comprises both expected out-
put and unexpected output components. Expected 
output is measured using vegetable yield, while unex-
pected output is assessed using agricultural nonpoint 
source pollution and CO2 emissions. Agricultural 
nonpoint source pollution primarily includes the im-
proper use and residual contamination of  fertilisers, 
pesticides, and plastic film (Ma and Tan 2021; Bao 
et al. 2022; Qin et al. 2024). Carbon emissions mainly 
result from the use of  agricultural fertilisers, pesti-
cides, and plastic films, as well as  the direct or  indi-
rect consumption of fossil fuels (primarily agricultural 
diesel and electricity) by agricultural machinery. How-
ever, during the research, plastic film use by  farmers 
in  vegetable production is  found to  be  low (3.3%), 
and the diversity of  pesticide types requiring dilu-
tion results in  inaccurate pesticide usage and runoff 
data. Additionally, farmers' reliance on  mechanised 
agricultural services rather than directly operating 
agricultural machinery made it  difficult to  collect 
data on fossil fuel usage. Therefore, this study primar-

Table 2. Basic characteristics of sample farm households (categorical variable)

Variable name Variable category Percentage (%) Variable name Variable category Percentage (%)

Head of household 
education

elementary school  
or below 21.89 Previous administra-

tive position
yes 19.62

junior high school 46.81 no 80.38
high school 23.80

Risk attitude 
risk preference 34.29

above high school 7.51 risk neutral  
and aversion 65.71

Soil quality
good 55.34 Participation in  

contract farming
yes 63.64

not good 44.66 no 36.36

Participation in  
contractual base

yes 29.51 Participation in  
stock-sharing base

yes 25.04
no 70.49 no 74.96

Participation in  
self-owned base

yes 9.09
Qingdao sample

yes 24.40
no 90.91 no 75.60

Weifang sample
yes 49.44

Jining sample
yes 26.16

no 50.56 no 73.84

Source: Authors' own elaboration 
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ily measures agricultural nonpoint source pollution 
and CO2 emissions based on fertiliser use. Fertilisers 
mainly contribute to  water pollution through nitro-
gen and phosphorus emissions. In 2017, nitrogen and 
phosphorus fertiliser applications in China accounted 
for 27.39% and 27.53% of the global total, respective-
ly. The utilisation rates of  nitrogen and phosphorus 
on Chinese farmland were only 30% to 35% and 10% 
to 20%, respectively (Yu et al. 2019), making them sig-
nificant contributors to  agricultural nonpoint source 
pollution. Nitrogen emissions primarily originate from 
urea, ammonium bicarbonate, and other nitrogen fer-
tilisers, as well as diammonium phosphate (containing 
18% nitrogen and 46% phosphorus) and triple-element 
compound fertilisers (containing 15% nitrogen and 
15% phosphorus). Phosphorus-nitrogen emissions 

mainly come from calcium superphosphate, diammo-
nium phosphate, and triple-element compound ferti-
liser. The runoff amount is calculated based on specific 
usage, pure quantity, and the loss coefficient. Nitro-
gen loss coefficient is  0.655, while the phosphorus 
loss coefficient is  0.326 ×  43.66%. Since the effective 
phosphorus content in fertilisers refers to the amount 
of phosphorus pentoxide (P2O5), the phosphorus loss 
amount must be multiplied by the coefficient of 43.66% 
to calculate the effective phosphorus loss. The calcu-
lations indicate that nitrogen runoff is  147.75 kg/ha, 
while phosphorus runoff is 17.85 kg ha. Carbon emis-
sions from fertilisers are calculated by  multiplying 
the effective nutrient content of  the fertilisers by the 
emission factor. Carbon emission factor for fertilisers 
is 0.896 kg CO2 per kg of fertiliser, as reported by the 

Table 3. Input–output descriptive statistics

Variable Variable definition Mean SD Min. Max. 

Expected 
output output yield (kg/ha) 63 107.10 32 952.75 23 775.00 139 500.00

Unexpected 
output

nitrogen  
emissions

total agricultural nonpoint source  
nitrogen pollution emissions (kg/ha) 147.75 62.55 70.05 269.85

phosphorus  
emissions

total agricultural nonpoint source phos-
phorus pollution emissions (kg/ha) 17.85 6.45 8.40 29.10

CO2 emissions fertiliser carbon emissions (kg/ha) 1 668.00 754.20 829.50 3 145.50

Input factors

seed input cost of seed input (USD/ha) 401.85 393.90 151.05 1 473.90

fertiliser input equivalent amount  
of fertiliser input (kg/ha) 1 862.55 842.10 926.25 3 512.10

pesticide input cost of pesticide input (USD/ha) 190.50 51.75 37.20 294.00

machinery  
input

total cost of own and hired  
machinery input (USD/ha) 281.25 63.45 165.60 455.40

labour input labour input from hired workers and 
family members (person-days/ha) 396.15 112.65 150.00 630.00

plastic film  
input plastic film input amount (kg/ha) 28.05 12.90 0.00 79.50

SD – standard deviation
Source: Authors' own elaboration

Table 4. Distribution of green technology efficiency among sample households

Green technology efficiency (0, 0.2) (0.2, 0.4) (0.4, 0.6) (0.6, 0.8) (0.8, 1.0)
Frequency 23 171 143 159 131
Relative frequency 0.037 0.273 0.228 0.254 0.209

Source: Authors' own elaboration
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Carbon Dioxide Information Analysis Centre (CDI-
AC). The results indicate that carbon emissions from 
fertilisers amount to 1 668.00 kg/ha.

Using Max-DEA software, we determine that the av-
erage green technology efficiency of vegetable-growing 
households in the sample areas is 0.560 (Table 4). This 
indicates that green technology efficiency in these ar-
eas is generally low, suggesting significant potential for 
improvement.

Propensity score matching model
Given that the key variable, 'participation in  con-

tract farming', is subject to self-selection bias, we em-
ployed the propensity score matching (PSM) model 
for analysis. Compared to  the endogenous switching 
model (ESM) and other alternatives, PSM is  widely 
used to  mitigate selection bias caused by  observable 
variables, achieving a  balance between the treated 
and control groups by matching them based on  simi-
lar characteristics. We  posit that smallholder farm-
ers' participation in contract farming is closely related 
to their production endowments. Farmers with greater 
resource endowments, larger production scales, and 
more technological reserves are more likely to engage 
in contract farming. For instance, previous research in-
dicates that farmers with ample labour resources and 
larger operational scales are more inclined to cooperate 
with enterprises (Singh 2002; Miyata and Minot 2009). 
Since these participation decision factors primarily in-
volve observable variables, PSM provides better control 
over these biases compared to the endogenous switch-
ing model (Crown 2014; Umberto et al. 2018). 

Moreover, our research aims to compare the effects 
of  different categories of  contract farming on  green 
technology efficiency. By calculating the average treat-
ment effect on  the treated (ATT) between the treat-
ment and control groups, the PSM model offers a clear 
and intuitive approach to comparing outcomes across 
different groups, aligning closely with the objectives 
of our study (Adjin et al. 2020).

Individuals in  the treatment group are matched 
with individuals in  the control group based on  the 
principle of  'closeness' concerning several character-
istics, ensuring that matched households have no sig-
nificant differences other than their participation 
in contract farming. The individual propensity score 
(i.e.  conditional probability fitting value) of  farmers 
can be expressed as follows:

where: P – estimated propensity score, denoting the prob-
ability of a farmer participating in contract farming; Pr(.) – 
probability cumulative density function; Li – covariate(s); 
η – parameters to  be  estimated; D = 1  – participation 
in contract farming; D = 0 – nonparticipation.

The ATT, weighted by propensity scores, can be ex-
pressed as follows:

where: ATT – average treatment effect on the treated; 
E – expectation operator, average over the distribution 
of covarities; Y1i – green technology efficiency of farm-
ers participating in contract farming; Y0i – green tech-
nology efficiency of nonparticipating farmers.

After establishing the theoretical model, farmers 
participating in  contract farming were designated 
as  the treatment group, while those not participating 
formed the control group. In  the model, we  included 
the following covariates: age of  the household head, 
education level, previous administrative positions, 
risk attitudes, participation in technical training, pro-
portion of  agricultural income to  family endowment, 
social network size, production scale, soil quality, and 
degree of  land fragmentation. We then employed the 
logit model in Stata 15.0 to calculate propensity scores 
for individual farmers, after which the ATT was calcu-
lated based on these scores.

Before analysing the ATT results, common support 
and balance tests were performed. Using the most 
commonly used nearest neighbour matching method 
(1–4 matching) as an example, we identified 610 ob-
servations within the common range of values, with 

exp( )
( ) [ 1| ]

1 exp( )
i

i r i
i

L
P L P D L

L
η

= = =
+ η
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(2){ }
{ }
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[( – )| 1]
         [( – )| 1], ( )
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Table 5. Number of lost samples in the common support 
domain of the propensity score matching method

Group
Common support

Totaloutside common 
range

inside common 
range

Treatment 
group 10 222 232

Control  
group 7 388 395

Total 17 610 627

Source: Authors' own elaboration
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only 17 samples excluded (Table  5). This meets the 
common support condition. Four matching methods 
– nearest neighbour matching, radius matching, ker-
nel matching, and local linear regression matching – 
were employed for balance tests. The results (Table 6) 
indicate that the pseudo-R2 values are all close to 0, 
and the likelihood ratio test statistic (LR) values are 
not rejected after matching. This suggests that PSM 
significantly reduces differences between the treat-
ment and control groups, indicating that the two sam-
ple groups are generally similar across various feature 
dimensions and pass the balance test.

RESULTS AND DISCUSSION

Average treatment effect of  participating in  con-
tract farming

The estimated results across the four matching 
methods are consistent (Table  7). Using the near-
est neighbour matching method as  an  example, and 
based on the counterfactual hypothesis, we find that 
if  farmers participating in  contract farming did not 
participate, their green technology efficiency would 
increase from 0.560 to 0.614 – an  increase of 0.055, 
or  9.643%. The ATT value is  statistically significant 
at  the 5% level, indicating that participation in  con-

tract farming has a significant positive effect on green 
technology efficiency.

T﻿he results indicate that farmers' participation 
in contract farming can increase their potential out-
put by 9.643%. For farmers, this translates to higher 
marginal returns, which is  a  key concern for them. 
At the same time, for the government, this implies that 
the same level of output can be achieved with lower 
fertiliser inputs, thereby reducing nonpoint source 
pollution. This aligns with the current national policy 
direction toward green agricultural development.

We divide the samples into three categories based 
on production bases and calculate the average treat-
ment effects using the most commonly used nearest 
neighbour matching method (1 : 4 matching). Ac-
cording to the ATT values for sub-samples 1–3 (Ta-
ble 8), for farmers who do not participate in contract 
farming, joining contractual bases increases green 
technology efficiency increases by  0.044, though 
this increase is  only statistically significant at  the 
10% level. Participation in stock-sharing bases leads 
to  a  green technology efficiency increase of  0.075, 
which is  significant at  the 5% level. Meanwhile, 
participation in  self-owned bases leads to  a  green 
technology efficiency increase of 0.096, which is sig-
nificant at the 1% level.

Table 6. Balance test results of the propensity score matching method

Matching method Pseudo R2 LR value P-value Mean variance Median variance
Before matching 0.103 84.95 0.000 26.6 26.1
Nearest neighbour matching 0.014 15.27 0.123 6.4 4.0
Radius matching 0.013 14.72 0.143 6.7 6.0
Kernel matching 0.014 15.43 0.117 6.8 6.0
Local linear regression matching 0.012 13.52 0.196 6.6 6.5

LR – likelihood ratio test statistic
Source: Authors' own elaboration

Table 7. Average treatment effect on green technology efficiency of sample farmers

Matching 
method

Treatment 
group

Control 
group ATT T-value Matching 

method
Treatment 

group
Control 
group ATT T-Value

Nearest neigh-
bour matching 0.614 0.560 0.055** 2.380 Kernel 

matching 0.618 0.555 0.063*** 3.040

Radius  
matching 0.618 0.555 0.063*** 3.060

local linear 
regression 
matching

0.619 0.560 0.059** 2.050

**, ***significance at 5 and 1% level, respectively; ATT – average treatment effect on the treated 
Source: Authors' own elaboration
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The above results indicate the following. First, over-
all, participation in contract farming has a significant-
ly positive effect on  the green technology efficiency 
of vegetable farmers. Second, the improvement effects 
vary across production base models, ranked from high-
est to lowest as follows: self-owned base, stock-sharing 
base, and contractual base. The improvement in green 
technology efficiency is most pronounced in the self-
owned base model, approximately 2.2×  greater than 
in  the contractual base model and approximately 
1.3× greater than in the stock-sharing base model. This 
suggests that loose commodity contract relationships 
fail to  provide farmers with sufficient incentives and 
constraints for green production, whereas more tightly 
integrated organisational forms play a more significant 
role in regulating farmers' green production practices.

Robustness test
Discussion based on Instrumental variable Tobit 

regression model  (IV-Tobit). The IV-Tobit regres-
sion model is employed to assess the robustness of the 
impact of  farmer participation in  contract farming 
on green technology efficiency, as farmer efficiency val-
ues strictly fall between 0 and 1. To address the endo-
geneity issue associated with participation in contract 
farming, we select 'village contract farming participa-
tion' (the participation rate of other farmers in the same 
village in  contract farming) as  an  instrumental vari-
able. This instrumental variable is relevant, as farmers' 
decision-making is closely related to the participation 
of local farmers in contract farming. Additionally, the 
instrumental variable is  exogenous, meaning it  does 
not influence a specific household's decision to partici-
pate in contract farming once individual-specific fac-
tors are controlled for.

We conducted several tests to  validate the instru-
mental variables. The Wald values for the weak instru-

mental variable tests in  the four IV-Tobit models are 
21.42, 7.15, 21.46, and 6.04, all exceeding the critical 
threshold for rejecting the weak instrumental variable 
hypothesis at the 5% significance level. All instrumen-
tal variables in the first-stage regressions are significant 
at the 1% level. The F-values in the first stage of the four 
IV-Tobit models are 30.08, 30.64, 23.81, and 27.85, re-
spectively, all surpassing the commonly used thresh-
olds proposed by Staiger and Stock (1997) and Stock 
and Yogo (2002). Lastly, the Hansen J-test results for 
over-identification indicate that the coefficients of the 
residuals are not significant (P-values of 0.475, 0.178, 
0.101, and 0.379, respectively), meaning we cannot re-
ject the null hypothesis, thereby suggesting the validity 
of the instrumental variables.

The IV-Tobit regression results (Table  9) show 
that the impact of participation in contract farming, 
as well as participation in self-owned base and stock-
sharing base models, is positive and significant at the 
1% level, whereas participation in  the contractual 
base model variable is  not significant. These results 
closely align with the conclusions obtained using the 
PSM method.

Discussion based on  farmer scale classification. 
To  further investigate the robustness of  the impact 
of  contract farming, we  examine its effects on  sub-
samples with different land sizes. Land size, an  im-
portant input in  farmers' production, influences both 
production patterns and the supervision exercised 
by  enterprises. According to  the 'Third National Ag-
ricultural Census of China', we categorise the sample 
farmers into two groups: the large-scale group (with 
a production scale greater than or equal to 6.67 ha and 
the small-scale group (with a production scale less than 
6.67 ha). We then explore the impact of participation 
in  different categories of  contract farming on  green 
technology efficiency within each group. According 

Table 8. Average treatment effects of different bases on sample farmers' green technology efficiency

Sample group (sample size) Treatment feature Mean ATT T-value

Subsample 1
treatment group (185) contractual base 0.606

0.044* 1.780
control group (228) nonparticipation in contract farming 0.562

Subsample 2
treatment group (157) stock-sharing base 0.700

0.075** 2.400
control group (226) nonparticipation in contract farming 0.625

Subsample 3
treatment group (56) self-owned base 0.635

0.096*** 5.710
control group (183) nonparticipation in contract farming 0.539

*, **, ***significance at 10, 5, and 1% level, respectively; ATT – average treatment effect on the treated
Source: Authors' own elaboration
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Table 9. IV-Tobit model estimation results of the impact of farmer participation in contract farming on green technol-
ogy efficiency

Variable
First-stage regression Second-stage regression

coefficient SE 95% confficient 
interval P-value coefficient SE 95% confficient 

interval P-value

Participation in  
contract farming – – – – – 0.146*** 0.026 0.096 0.197 0.000

Village contract  
farming participation 0.850*** 0.557 0.741 0.959 0.000 – – – – –

Control variables controlled – – – – controlled – – – –
Contractual base – – – – – 0.362* 0.191 –0.011 0.936 0.057

Village contractual 
base participation 0.111*** 0.042 0.028 0.193 0.008 – – – – –

Control variables controlled – – – – controlled – – – –
Stock-sharing base – – – – – 0.382*** 0.054 0.277 0.488 0.000

Village stock-sharing 
base participation 0.326*** 0.066 0.195 0.456 0.000 – – – – –

Control variables controlled – – – – controlled – – – –
Self-owned base – – – – – 0.242*** 0.052 0.139 0.344 0.000

Village self-owned 
base participation 0.818*** 0.052 0.716 0.920 0.000 – – – – –

Control variables controlled – – – – controlled – – – –

*, ***significance at 10 and 1% level, respectively; SE – standard error
Source: Authors' own elaboration

Table 10. Average treatment effects of different bases on green technology efficiency of sample farmers

Sample group (sample size) Treatment feature Mean ATT T-Value

Small-scale 
group

subsample 4
treatment group (172) contract farming 0.682

0.049 1.840*
control group (122) nonparticipation in contract farming 0.633

subsample 5
treatment group (84) contractual base 0.662

0.043 1.350
control group (120) nonparticipation in contract farming 0.620

subsample 6
treatment group (60) stock-sharing base 0.756

0.076 2.490**
control group (121) nonparticipation in contract farming 0.679

subsample 7
treatment group (28) self-owned base 0.697

0.084 1.940*
control group (96) nonparticipation in contract farming 0.613

Large-scale 
group

subsample 8
treatment group (226) contract farming 0.676

0.058 2.010**
control group (106) nonparticipation in contract farming 0.618

subsample 9
treatment group (99) contractual base 0.649

0.050 1.550
control group (106) nonparticipation in contract farming 0.599

subsample 10
treatment group (96) stock-sharing base 0.666

0.062 2.150**
control group p (106) nonparticipation in contract farming 0.603

subsample 11
treatment group (29) self-owned base 0.727

0.129 2.070**
control group (106) nonparticipation in contract farming 0.599

*, **significance level at 10 and 5% level, respectively; ATT – average treatment effect on the treated
Source: Authors' own elaboration
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to  the ATT values for sub-samples 4–11 (Table  10), 
the effects of  self-owned bases, stock-sharing bases, 
and contractual bases display a consistent pattern from 
small to  large across both small-scale and large-scale 
farmers, mirroring the results from the full sample. 
Furthermore, a comparison of the two groups reveals 
that the impact and significance of  contract farming 
are greater for large-scale farmers than for small-scale 
farmers. The larger the scale of the farmers, the more 
pronounced the effect of contract farming on improv-
ing their green technology efficiency.

Capacity enhancement pathway of  participation 
in contract farming on green technology efficiency

Our theoretical analysis indicates that the planned 
instructions and production services provided 
by  contract providers serve as  intermediary path-
ways through which contract farming enhances green 
technology efficiency. We  represent issuing planned 
instructions using the variables 'whether the enter-
prise issues planned instructions' (coded as 1 for 'yes' 
and 0 for 'no') and 'whether the enterprise provides 
technical guidance' (coded as 1 for 'yes' and 0 for 'no'). 
Additionally, we  represent the provision of  produc-
tion services using the variable 'whether they obtain 
soil testing and integrated pest management services' 
(assigned as 1 for 'yes' and 0 for 'no'). Given that these 
three intermediary variables coexist, we  construct 
a  parallel multiple-mediation model. Unlike a  sin-
gle-mediation model, a  multiple-mediation model 
corrects parameter estimation biases caused by  the 
simultaneous presence of multiple variables, enabling 
the comparison of multiple mediation effects to ob-
tain the total mediation effect. For all self-owned base 

samples, production is uniformly arranged by the en-
terprise, with production plans, technical support, 
and socialised services provided to every contracted 
household. Since this does not meet the conditions 
for mediation analysis, we  only test the contract-
based and stock-sharing base models.

We employ Preacher and Hayes' bootstrapping 
method (Preacher and Hayes 2008) to  test the media-
tion effects (5 000 iterations). For the contractual bases 
(Table 11), the mediation effect of  issuing planned in-
structions is 0.028, but this effect is not significant; the 
mediation effect of providing technical guidance is 0.034 
and is significant at the 5% level; and the mediation effect 
of providing soil testing and integrated pest management 
services is 0.044, also significant at the 5% level. These 
results indicate that both providing technical guidance 
and production services are potential pathways to  en-
hancing farmer green technology efficiency, thereby 
confirming H1. However, the issuance of  planned in-
structions is not always effectively conveyed to farmers, 
resulting in a lack of significant mediation effect.

For the stock-sharing base (Table  11), the media-
tion effect of  issuing planned instructions is  0.033, 
significant at  the 5% level, while the mediation effect 
of  providing technical guidance is  0.041, also signifi-
cant at the 5% level. The mediation effect of providing 
soil testing and integrated pest management services 
is 0.068 and is significant at the 5% level. By comparing 
the mediation effect values for the contract-based and 
stock-sharing base models, we find that the mediation 
effect of production services surpasses that of planned 
instructions, indicating that enterprise-provided so-
cialised services have a more substantial impact on en-
hancing farmers' green technology efficiency.

Table 11. Multiple-mediation model results for contractual bases and stock-sharing bases

Mediation effect coefficient
Contractual bases Stock-sharing bases

coefficient 95% confidence interval coefficient 95% confidence interval
Direct effect 0.037 0.0004 0.069 0.020 –0.015 0.050

Parallel indi-
rect effects

issuing planned  
instructions 0.028 −0.001 0.065 0.033 0.002 0.053

providing technical  
guidance 0.034 0.011 0.047 0.041 0.027 0.072

soil testing and integrated 
pest management services 0.044 0.021 0.068 0.068 0.040 0.093

Total effect 0.143 0.110 0.171 0.151 0.117 0.176

Source: Authors' own elaboration
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Empowerment pathway of participation in contract 
farming on green technology efficiency

To measure the impact of  procurement prices 
on enhancing green technology efficiency in contract 
farming, we use 'higher purchase price', defined as the 
'percentage of  purchase price higher than local veg-
etable average selling price last year', as  a  moderat-
ing variable. This variable interacts with participation 
in  contract farming for moderation-effect analysis. 
Given the endogeneity issues affecting the participa-
tion variable, we  use 'village contract farming par-
ticipation' as an instrumental variable. The two-stage 
least squares (2SLS) method with instrumental vari-
ables is employed for this analysis.

The unidentifiable test results yield an  LM value 
of 26.37, strongly rejecting the null hypothesis at the 
1% significance level. The weak instrumental variable 
test, indicated by  a  Cragg–Donald Wald F-statistic 
of 13.46, exceeds the critical value for 10% bias, sig-
nifying no  weak instrumental variable problem. The 

results (Table  12) reveal that the interaction term 
is  positive and highly significant (at the 1% level), 
indicating that higher procurement prices signifi-
cantly enhance the positive effect of contract farming 
on green technology efficiency.

To further differentiate the incentive effects of pro-
curement prices across different types of contract or-
ganisations, we  conduct a  heterogeneity analysis for 
the three model types. These three models also under-
went over-identification tests and weak instrumental 
variable tests, all of which rejected the null hypothesis. 
Due to  space constraints, specific test values are not 
provided. In  the contractual base model, the interac-
tion term is not significant, suggesting that economic 
incentives may not necessarily enhance the green tech-
nology efficiency of  farmers within this model. Con-
versely, in the self-owned base and stock-sharing base 
models, the moderation effect is  significant, indicat-
ing that increasing procurement prices can effectively 
motivate farmers' transformation toward green pro-

Table 12. Moderation-effect model considering endogeneity

Variable Coefficient SD P-value
Total sample
Participation in contract farming 0.031 0.029 1.050
Higher purchase price 0.519*** 0.054 9.600

Participation in contract farming ×  
higher purchase price 1.193** 0.506 2.360

Control variables controlled controlled controlled

Contractual base model
Contractual base model 0.073 0.088 0.406
Higher purchase price 0.537*** 0.126 4.260
Contractual base × higher purchase price 0.426 0.722 0.555
Control variables controlled controlled controlled

Self-owned base model
Self-owned base model 0.127*** 0.027 4.610
Higher purchase price 0.602*** 0.066 9.710
Self-owned base × higher purchase price 0.815*** 0.217 3.760
Control variables controlled controlled controlled

Stock-sharing base
Stock-sharing base 0.190 0.294 0.650
Higher purchase price 6.379*** 1.736 3.670
Stock-sharing base × higher purchase price 0.506*** 0.094 5.370
Control variables controlled controlled controlled

**, ***significance at 5 and 1% level, respectively; SD – standard deviation
Source: Authors' own elaboration
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duction in  these models. This result validates H2 and 
highlights shortcomings in the contractual base model 
regarding its ability to incentivise farmers' green pro-
duction transformation.

To clarify the impact of procurement prices on farm-
ers' green technology efficiency, we  employ a  single-
threshold model to  compare the incentive effects 
of  procurement prices across the three base models. 
By  comparing the model results of  the three types 
of bases (Table 13), we find a distinct nonlinear thresh-
old relationship between contract farming participa-
tion and green technology efficiency. The positive effect 
of participating in contract farming on green technol-
ogy efficiency is influenced by the procurement price. 
At the same procurement prices, as the organisational 
production of  the base becomes more integrated, the 
enhancing effect of price incentives on green technol-
ogy efficiency becomes significantly stronger.

CONCLUSION

To identify the significant role of contract farming 
in 'greening' the agricultural industry, this study con-
structs an analytical framework based on the dual di-
mensions of  'ability-motivation' to assess the impact 
and mechanisms of  contract farming on  the green 
technology efficiency of planting farmers across vari-
ous base models. Empirical tests were conducted us-
ing sample data from 627 vegetable planting farmers 
in Shandong. The results are summarised as follows.

First, under the counterfactual assumption, if plant-
ing farmers participate in  contract farming, green 
technology efficiency increases from 0.560 to  0.614. 
The improvement varies across different production 
base models: self-owned base, stock-sharing base, and 
contractual base. This conclusion holds even when em-
ploying the IV-Tobit model and conducting a scale het-
erogeneity analysis.

Second, as a pathway to improving green technology 
efficiency, providing productive services has a signifi-
cant mediating effect in  the self-owned stock-sharing 

base models and contractual bases, whereas issuing 
planned instructions fails to effectively reach farmers 
in the contractual base model. Significantly, the medi-
ating effect of productive services is greater than that 
of planned instructions.

Lastly, increasing procurement prices significant-
ly enhances the effect of  contract farming on green 
technology efficiency in  the self-owned and stock-
sharing base models. There exists a  clear nonlinear 
threshold relationship between participation in con-
tract farming and green technology efficiency, where 
tighter integration of organisational models amplifies 
the role of price incentives in enhancing efficiency.

In summary, we  believe that contract farming has 
a  'hidden function' in enhancing the green technology 
efficiency of vegetable industry households, addressing 
gaps identified in previous studies. Importantly, the role 
of contract farming in promoting green transformation 
is largely influenced by the organisational model. Effec-
tive communication of planting instructions through in-
tegrated models and supervision mechanisms is crucial 
for achieving incentive effects, preventing opportunistic 
behaviour among farmers, and aligning with green pro-
duction goals. This study confirms the necessity of up-
grading contract farming organisational models to more 
advanced forms to  facilitate green transformation: 
as contract organisational forms evolve toward integra-
tion, the capacity and effectiveness of contract farming 
to  improve green technology efficiency will gradually 
increase. From an  influencing mechanism perspective, 
planned instructions, productive services, and price 
incentives are effective pathways. However, planned in-
structions and price incentives often 'fail' in contractual 
bases, indicating that loose organisational models may 
not adequately motivate or  constrain farmers to  un-
dergo production transformation. Conversely, the direct 
effect of productive services on production is more pro-
nounced, aligning with findings from other studies (Shi 
et al. 2023; Yang et al. 2023).

The policy implications of this study are as follows. 
First, the vegetable industry contract farming model 

Table 13. Threshold model regression results

Model Threshold value Coefficient 1 SE Coefficient 2 SE
Contractual base 0.062 −0. 079*** −4.150 0.118*** 7.900
Self-owned base 0.066 −0. 030*** −1.420 0.143*** 7.790
Stock-sharing base 0.062 −0.046 −1.540 0.185*** 6.230

***significance at 1% level; SE – standard error
Source: Authors' own elaboration
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should be  improved by  promoting 'high-quality con-
tract farming' to facilitate the industry's green produc-
tion transformation. This would involve encouraging 
regional planting, standardised production, and large-
scale operations through long-term contracts, thereby 
enhancing farmers' production efficiency. Second, the 
modes of self-owned bases for contract farming should 
be innovated by promoting their construction through 
financial support and developing win–win cooperation 
systems between enterprises and farmers. Lastly, the 
productive service mechanism within contract farm-
ing should be strengthened, as it serves as an essential 
pathway to standardising and scaling production. The 
use of  green technologies, industry-specific systems, 
and material equipment should be leveraged to facili-
tate the comprehensive transformation and enhance-
ment of farmers' production toward sustainability.

In addition to contributions to theory and practice, 
this study has some limitations. First, the investigation 
focused solely on  Shandong. Future research should 
expand the sample area to determine whether similar 
conclusions can be drawn from other regions. Second, 
the study employs a  cross-sectional design, relying 
on data from a single point in time. Future studies may 
benefit from utilising longitudinal designs to enhance 
the generalisability of the empirical findings.
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