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Abstract: Mitigating emissions from the agricultural sector is  crucial for achieving sustainable development goals. 
However, controlling emissions in one sector can lead to unintended consequences in others through leakage effects. 
Grounded in the theoretical propositions of sectoral shift theory (SST), the rebound effect, and leakage effects, this 
study investigates the asymmetric impact of environmentally sound technology (EST) imports and exports on agricul-
tural emissions (N₂O and methane) within the framework of the agricultural Kuznets curve (AKC). Utilising a balanced 
panel dataset of 105 countries from 2010 to 2020, we employ the Westerlund cointegration test to establish long-run 
relationships among variables. Method of Moments Quantile Regression (MMQR) estimations reveal a positive effect 
of EST imports and exports on agricultural N₂O emissions, intensifying the impact at higher quantiles. This suggests 
that industrial emission reductions through EST may have unintended consequences in agriculture via two mecha-
nisms: emission leakage from industry to agriculture and increased agricultural emissions resulting from productivity 
improvements through the rebound effect. Nevertheless, in line with SST, our results indicate that sustainable agricul-
tural trade can contribute to mitigating agricultural emissions. The AKC hypothesis holds across almost all models. 
These findings underscore the importance of developing tailored policies to design EST specifically for the agricultural 
sector, ensuring more effective emission reductions.

Keywords: Greenhouse gas emissions; environmental technology; quantile regression; rebound effect; carbon leakage; 
sustainable agriculture

The Glasgow Climate Pact of  2021 calls for a  45% 
reduction in carbon dioxide (CO2) emissions by 2030 
relative to 2010 levels (Depledge et al. 2022). The pact 
further emphasises support for developing countries 
to  achieve sustainable growth while aiming to  limit 
global temperature rise to 1.5 °C above pre-industrial 

levels (van de Ven et al. 2023). However, focusing sole-
ly on  CO2 reductions while neglecting other potent 
greenhouse gases like nitrous oxide (N2O) and meth-
ane (CH4) may hinder countries' ability to achieve com-
prehensive sustainability (Filonchyk et  al.  2024). N2O 
and CH4, primarily from agricultural sources, have sig-
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nificantly higher global warming potentials than CO2 
(Chataut et al. 2023). N2O primarily released from fer-
tiliser use and soil management practices, has a glob-
al warming potential approximately 298 times that 
of CO2 over a 100-year period (Montoya et al. 2021). 
Methane, largely emitted from livestock and rice pad-
dies, is about 25 times more potent than CO2 over the 
same timeframe (Pekkarinen 2020). These gases not 
only contribute disproportionately to  climate change 
but also persist in  the atmosphere for extended pe-
riods, with N2O having a  lifetime of  about 114 years 
(Tian et al. 2020). Their potency means that even rela-
tively small emissions can have substantial long-term 
impacts on  global temperature and climate patterns 
(Magazzino et al. 2023). 

While countries pursue various sustainability ini-
tiatives including green technological innovations (Li 
et al. 2024), green finance (Sultanuzzaman et al. 2024), 
digitalisation (Meiling et  al.  2021; Lee et  al.  2024a), 
or  energy efficiency (Lee and Yahya 2024), primarily 
focused on CO2 emissions, this emphasis may overlook 
other significant greenhouse gases, particularly from 
agricultural sources. This imbalanced approach could 
potentially limit the overall effectiveness of  climate 
mitigation efforts and hinder progress towards com-
prehensive sustainability. To examine this proposition, 
we analyse the effect of  imports and exports of envi-
ronmentally sound technologies (EST) on agricultural 
emissions (N2O and CH4). 

The hypothesis that trade in  EST can primarily in-
crease agricultural emissions can be grounded in three 
economic concepts. First, the rebound effect, also 
known as the Jevons paradox, suggests that increased 
efficiency through environmental innovation may re-
duce industrial emissions but indirectly encourage ex-
pansion of  agricultural productivity (Pan et  al.  2021; 
Han and Zhou 2024). Second, the leakage effect pos-
its that emissions reduction in  one sector (indus-
try) through green technology can elevate emissions 
in an alternative sector (agriculture), especially in coun-
tries with a comparative advantage in agriculture (Beck 
et al. 2023). Finally, the sectoral shift theory (SST) ex-
plains how economic transition towards more service 
and technology-oriented structures through green 
technologies may shift resources and focus away from 
traditional industrial sectors (Busch and Amarjargal 
2022). This shift could inadvertently lead to an inten-
sification of agriculture to maintain economic output, 
potentially increasing agricultural emissions.

Countries engaged in  EST trade primarily focus 
on  reducing industrial CO2 emissions, with import-

ers pursuing technology adoption and exporters seek-
ing profit generation, while overlooking the significant 
challenge of agricultural emissions. We test this prop-
osition using the agricultural Kuznets Curve (AKC) 
framework, as applied by Sharma et al. (2021) and Lee 
et  al.  (2024b). The AKC posits an  inverted U-shaped 
relationship between agricultural productivity and 
agricultural emissions, where initial mechanisation 
increases emissions until a threshold is reached, after 
which improved technologies and environmental prac-
tices lead to emission reductions.

Our study contributes to the literature in several sig-
nificant ways. First, it is a pioneering investigation ex-
amining the effect of both imports and exports of EST 
on  agricultural emissions. While numerous studies 
have explored the negative impact of green technology 
on CO2 emissions (Habiba et al. 2022; Lin and Ma 2022; 
Milindi and Inglesi-Lotz 2022; Sharif et  al.  2022), the 
effect on agricultural emissions has been largely over-
looked. Drawing on the theoretical propositions of the 
rebound effect, leakage effect, and SST, we investigate 
whether agricultural emissions remain unaddressed 
despite increasing trade in environmental technologies.

Second, we employ the AKC, which has been under-
explored in previous research. Most studies have utilised 
the environmental Kuznets Curve (EKC) when estimat-
ing the effect of agriculture on N2O or CH4 emissions 
(Zambrano‐Monserrate and Fernandez 2017; Haider 
et al. 2020; Uddin 2020; Tarazkar et al. 2021; Yahya and 
Lee 2023a). While the EKC provides a broader perspec-
tive on economic development and overall environmen-
tal impact (Phuc Nguyen et  al.  2020), the AKC offers 
a  more targeted and nuanced understanding of  how 
agricultural practices, technologies, and policies directly 
influence farming-related emissions.

Third, we  estimate the asymmetric effect of  EST 
trade on  agricultural emissions, considering two key 
factors. Countries with higher agricultural emissions 
may have more industrialised farming practices, where 
efficiency gains from EST in other sectors could lead 
to increased resource allocation to agriculture, poten-
tially intensifying production and emissions. Addition-
ally, countries with higher emissions may have more 
established, emission-intensive agricultural practices 
that are resistant to  change, even as  EST is  adopted 
in other sectors. Furthermore, the existence of an AKC 
varies across the agricultural emissions distribution 
due to differing levels of development among countries 
(Czyżewski and Kryszak 2018).

As a robustness check, we employ two unique prox-
ies to estimate the effect of EST trade on agricultural 
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emissions. We multiply agricultural imports with EST 
imports and agricultural exports with EST exports 
to assess if targeted sectoral EST can mitigate agricul-
tural emissions. 

MATERIAL AND METHODS 

Sample and measurements
The study's dependent variable is agricultural emis-

sions, primarily comprising two types: nitrous oxide 
and methane. N2O emissions result from fertiliser use 
(both synthetic and animal manure), while CH4 emis-
sions primarily stem from savanna burning, non-ener-
gy waste burning, rice cultivation, animal waste, and 
livestock. The main explanatory variables are imports 
and exports of ESTs in current USD, which are tech-
nologies that significantly reduce environmental im-
pact compared to conventional alternatives.

To estimate the AKC, we employ agricultural value 
added [(as  a  percentage of  gross domestic product 
(GDP)] and its squared term. Control variables include 
financial development, measured by  domestic credit 
to the private sector by banks (as a percentage of GDP), 
and GDP per capita. Financial development can facili-
tate access to credit and investment in more efficient, 
sustainable agricultural technologies, potentially re-
ducing farming-related emissions (Wang et  al.  2020). 
Moreover, as GDP increases, economies often shift to-
wards more service-oriented sectors and become less 
agriculture-dependent. This transition, coupled with 
increased environmental awareness and stricter regu-
lations, can contribute to  a  reduction in  agricultural 
emissions (Leng et  al.  2023). Data on EST is  sourced 
from the Our World in Data (OWID) database, while 
all other variables are obtained from the World Bank's 
World Development Indicators (WDI).

Due to data limitations on EST imports and exports, 
the study covers the period from 2010 to 2020. After bal-
ancing the panel, a sample of 105 countries is retained. 
Among sample countries, China leads EST trade, while 
Sao Tome and Principe and Comoros record the low-
est exports and imports respectively, highlighting sig-
nificant disparities in environmental technology trade. 
The complete list of countries is provided in Electronic 
supplementary material (ESM) Table  S1, while Table 
S2 presents detailed information on the data, including 
measurements and sources.

Empirical model
Following the theoretical propositions of  SST, re-

bound effect, and leakage effect, we analyse the impact 

of EST imports and exports on agricultural emissions 
using the following baseline model:

where: AGEM – agricultural emissions; i.e.  N2O and 
CH4; IEST – imports and exports of  environmentally 
sound technologies; AGVA – agricultural productivity 
(agricultural value added); AGVASQ – squared term 
to  examine AKC; GDP – gross domestic product per 
capita; FD –financial development. 

Statistical techniques
Our empirical strategy begins with comprehensive di-

agnostic testing, including cross-sectional dependence, 
slope homogeneity, second-generation panel unit root 
tests, and Westerlund cointegration analysis (detailed 
in Exhibit A in ESM). Given the presence of cross-sec-
tional dependence, we employ the Driscoll-Kraay (DK) 
estimator, which provides standard errors robust to spa-
tial and temporal dependence, offering superior perfor-
mance over conventional ordinary least square (OLS) 
estimation (Driscoll and Kraay 1998; Li et al. 2024). The 
DK estimator can be estimated as follows:

where: βDK – Driscoll-Kraay estimator; X – vector 
of  independent variables; Y – dependent variable; 
Var(βDK) – variance-covariance matrix of the estimator; 
ŜDK – DK standard error estimator and can be defined as: 

where: –1
1 –

ˆ ˆˆ T
k t k t t kT h h= +Ω = ′∑ , –1

1
ˆ ˆN

t i it ith T x u== ∑ , 
w(k,m) – weight function; m – maximum lag length. 

While OLS or DK estimator provide a useful average 
relationship, they focus on estimating the conditional 
mean of the dependent variable, which can be limiting 
in certain scenarios (Lee and Yahya 2024). They may 
not capture the full picture of how variables interact, 
especially in datasets with heterogeneous relationships 
or when dealing with non-normal distributions (Yahya 
and Lee 2023b). Quantile regression offers several ad-
vantages over OLS. It allows for a more comprehensive 
analysis by estimating relationships at different points 
of the conditional distribution of the dependent vari-

(1)

(2)

(3)

(4)

DK –1( )X X X Yβ = ′ ′

DK –1 DK –1ˆ( ) ( ) ( )Var X X S X Xβ = ′ ′

0 1
ˆ ˆ ˆ ˆ( , )[ ]DK m

k k kS w k m== Ω + Ω +Ω ′∑

0 1 2

3 4 4               
it it it

it it it t

AGEM IEST AGVA
AGVASQ GDP FD

= β +β +β +
+β +β +β + ε
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able, not just the mean. This is particularly useful when 
the impact of independent variables varies across the 
distribution (Canay 2011). 

Quantile regression is also more robust to outliers and 
can handle heteroscedasticity more effectively (Koenker 
and Bassett Jr 1978). It provides insights into the entire 
conditional distribution, making it valuable for analysing 
data with skewed distributions or when interested in ex-
treme values (Waldmann 2018). Additionally, quantile 
regression does not assume a particular distribution for 
the error terms, making it more flexible for various types 
of data (Davino et al. 2013). The basic form of quantile 
regression can be formulated as follows:
where: x – set of exogenous variables; y – endogenous 

variable; µ – error terms in  the θth distribution point 
of the criterion variable. 

We employ Method of Moments Quantile Regression 
(MMQR) that offers several advantages over conven-
tional quantile regression, making it a more robust and 
flexible approach for analysing distributional effects 
(Machado and Silva 2019). Unlike traditional quantile 
regression, MMQR does not rely on  the assumption 
of independent and identically distributed errors, mak-
ing it more suitable for complex data structures with 
potential heteroscedasticity and serial correlation (Ike 
et  al.  2020). This method also offers computational 
efficiency, especially for large datasets, as  it  does not 
require the solution of  a  complex optimisation prob-
lem for each quantile (Anwar et al. 2021). Additionally, 
MMQR allows for the easy implementation of hypoth-
esis tests and the construction of confidence intervals, 

facilitating more comprehensive statistical inference 
(Lee et al. 2023). Accordingly, Equation (1) can be re-
estimated as follows:

RESULTS AND DISCUSSION

Diagnostic tests
Prior to  analysis, all variables underwent logarith-

mic transformation to address potential non-linearity 
and heteroscedasticity. Table 1 presents the descriptive 
statistics of  the transformed variables, revealing that 
average agricultural methane emissions slightly exceed 
N2O emissions. Furthermore, the data indicate that 
imports of ESTs surpass exports. The CD test results 
strongly reject the null hypothesis of  cross-sectional 
independence for all variables. Additionally, the slope 
homogeneity test provides evidence of significant slope 
heterogeneity in the model (see Table S3 in ESM). These 
findings underscore the importance of employing sec-
ond-generation panel unit root and cointegration tests, 
which are robust to  cross-sectional dependence and 
slope heterogeneity. 

The results of  panel unit root test suggest that all 
variables are stationary at first difference (see Table S4 
in  ESM) and Westerlund cointegration test reveals 
long run cointegration between underlying variables 
(see Table S5 in ESM). Given these findings, we pro-
ceed to  estimate the long-run coefficients using two 
complementary approaches: the DK estimator and the 
MMQR. The DK estimator is chosen for its robustness 
to cross-sectional dependence and heteroscedasticity, 

Table 1. Descriptive statistics and cross-sectional dependence (N = 1 155)

Variables Mean SD Min. Max. Skewness Kurtosis P = 25 P = 75 CD
AGN2O 8.091 2.146 1.303 12.788 –0.763 3.917 7.099 9.437 245.008***
AGMETH 8.327 2.361 0.816 13.127 –0.871 4.218 7.083 9.778 245.020***
EEST 19.851 3.204 7.946 26.279 –0.390 3.029 17.487 22.510 244.819***
IEST 21.144 2.151 15.222 25.825 –0.155 2.594 19.622 22.784 245.045***
AGVA 22.086 1.990 16.897 27.754 –0.046 3.002 20.777 23.452 245.062***
GDP 8.876 1.387 5.384 11.725 –0.145 2.294 7.999 9.917 245.027***
FD 3.808 0.737 1.752 5.543 –0.173 2.376 3.283 4.386 244.459***

*** significance at 1% level; SD – standart deviation; CD – cross-sectional dependence test; AGN2O –agricultural N2O 
emissions; AGMETH – agricultural methane emission; EEST – exports of environmentally sound technologies; AGVA 
– agricultural productivity (agricultural value added); GDP – gross domestic product; FD – financial development
Source: Compiled and calculated by the authors using data from Our World in Data and World Development Indicator

( ) ,0 1i iQuant y x x b bθ θθ
= β +µ θ (5)

(6)1 2

3 4 5

( )
                       

it it it

it it it t

Q AGEM EST AGVA
AGVASQ GDP FD

τ τ τ τ

τ τ τ

= α +β +β +
+β +β +β + ε
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while the MMQR allows us to examine the potentially 
heterogeneous effects across different quantiles of the 
agricultural emissions distribution. 

Driscoll-Kraay estimations
The results obtained from the DK estimator, presented 

in Table 2, reveal that both exports and imports of EST 
are associated with increased agricultural N2O emis-
sions. These findings align with the theoretical under-
pinnings of the SST, rebound effect, and leakage effect. 
The observed relationship suggests that exporting coun-
tries may prioritise addressing their industrial or  CO2 
emissions before selling EST to  importing nations, 
while importing countries may not acquire sufficient 
EST specifically targeted at mitigating their agricultural 
N2O emissions. This finding aligns with the recent work 
of Abbasi and Zhang (2024), who demonstrated a posi-
tive association between green innovation, agricultural 
land use, and greenhouse gas (GHG) emissions.

Interestingly, our analysis indicates no  statistically 
significant effect of EST trade on agricultural methane 
emissions. This differential impact on N2O and meth-

ane emissions warrants further investigation and may 
reflect the varying sources and mitigation strategies for 
these two greenhouse gases in the agricultural sector. 
Furthermore, our results provide robust evidence for 
the existence of an AKC across all models. This finding 
implies that agricultural productivity initially increases 
emissions during the scaling stage, but beyond a cer-
tain threshold, emissions decrease due to composition 
and technique effects (Sharma et al. 2021). 

Method of Moments Quantile Regression (MMQR)
Although the DK estimator is an effective tool for ad-

dressing CD, panel quantile regression is more suitable 
when variables do not follow a normal distribution. Sev-
eral normality tests were conducted, indicating that var-
iables are not normally distributed (Table S6 in ESM). 
Consequently, the MMQR is employed to  further elu-
cidate the study's findings. Table 3 presents the results 
of  the MMQR for the first model. Consistent with the 
theoretical propositions of  rebound and leakage ef-
fects, our findings indicate that EST exports increase 
N2O emissions, with a slightly more pronounced effect 

Table 2. Driscoll-Kraay estimations

Variables
(1) (2) (3) (4)

AGN2O AGN2O AGMETH AGMETH

EEST
0.114*** – –0.006 –

(0.004) – (0.003) –

IEST
– 0.245*** – 0.014
– (0.009) – (0.014)

AGVA
2.873*** 2.964*** 3.624*** 3.599***

(0.041) (0.039) (0.059) (0.060)

AGVASQ
–0.045*** –0.049*** –0.057*** –0.057***
(0.001) (0.001) (0.001) (0.001)

GDP
–0.165*** –0.219*** –0.157*** –0.174***
(0.008) (0.011) (0.013) (0.012)

FD
–0.420*** –0.390*** –0.330*** –0.337***
(0.037) (0.033) (0.020) (0.020)

Constant
–32.458*** –35.073*** –40.691*** –40.476***

(0.518) (0.455) (0.700) (0.711)
Observations 1 155 1155 1 155 1 155
R-squared 0.876 0.878 0.857 0.857
Number of groups 105 105 105 105

*** significance at 5% level, respectively; AGN2O – agricultural N2O emissions; AGMETH – agricultural methane emis-
sion; EEST – exports of environmentally sound technologies; IEST – imports of environmentally sound technologies; 
AGVA – agricultural productivity (agricultural value added); AGVASQ – squared term of agricultural value added; 
GDPPC – groos domestic product; FD – financial development
Source: Compiled and calculated by the authors using data from Our World in Data and World Development Indicator 

302

Original Paper	 Agricultural Economics – Czech, 71, 2025 (6): 298–307

https://doi.org/10.17221/399/2024-AGRICECON



at higher quantiles. This relationship can be explained 
through two mechanisms. First, countries with higher 
N2O emissions typically have larger agricultural sec-
tors, where efficiency improvements may paradoxically 
lead to expanded production and higher emissions due 
to  the rebound effect (Hassapoyannes and Blandford 
2019; Laborde et al. 2020). Second, the focus on EST ex-
ports might create resource allocation challenges.

These findings suggest a potential trade-off between 
EST export development and domestic environ-
mental management. Countries intensively focused 
on  EST exports may face constraints in  allocating 

sufficient resources, expertise, and policy attention 
to their domestic agricultural sector's environmental 
performance (Ogle et al. 2023). This resource alloca-
tion challenge can lead to  reduced implementation 
of  sustainable agricultural practices, particularly 
in  countries where institutional capacity is  limited 
(Paul et  al.  2023). Furthermore, the results provide 
strong evidence for the existence of  the AKC across 
all nine quantiles examined, indicating a  consistent 
non-linear relationship between agricultural produc-
tivity and agricultural emissions across different lev-
els of N2O output (Sharma et al. 2021).

Table 3. MMQR estimations for the relationship between EEST and AGN2O

Variables
Quantiles

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90

EEST
0.113*** 0.113*** 0.113*** 0.113*** 0.114*** 0.114*** 0.114*** 0.114*** 0.115***

(0.018) (0.015) (0.015) (0.015) (0.016) (0.017) (0.019) (0.023) (0.028)

AGVA
3.865*** 3.473*** 3.333*** 3.182*** 3.003*** 2.762*** 2.496*** 2.158*** 1.740***

(0.265) (0.225) (0.218) (0.219) (0.227) (0.248) (0.279) (0.333) (0.406)

AGVASQ
–0.066*** –0.058*** –0.055*** –0.052*** –0.048*** –0.043*** –0.037*** –0.030*** –0.021**
(0.006) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.007) (0.009)

Controls yes yes yes yes yes yes yes yes yes
Constant yes yes yes yes yes yes yes yes yes

**, *** significance at 5 and 1% level, respectively; N = 1 155; dependent variable is agricultural N2O emissions; MMQR 
– Method of Moments Quantile regression; AGN2O – agricultural N2O emissions; EEST – exports of environmentally 
sound technologies; AGVA – agricultural productivity (agricultural value added); AGVASQ – squared term of agri-
cultural value added
Source: Compiled and calculated by the authors using data from Our World in Data and World Development Indicator

Table 4. MMQR estimations for the relationship between IEST and AGN2O

Variables
Quantiles

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90

IEST
0.182*** 0.204*** 0.214*** 0.225*** 0.238*** 0.253*** 0.269*** 0.290*** 0.319***

(0.039) (0.034) (0.033) (0.033) (0.034) (0.037) (0.041) (0.048) (0.060)

AGVA
4.205*** 3.780*** 3.573*** 3.355*** 3.104*** 2.818*** 2.500*** 2.069*** 1.495***

(0.293) (0.242) (0.234) (0.234) (0.242) (0.260) (0.291) (0.346) (0.430)

AGVASQ
–0.075*** –0.066*** –0.062*** –0.057*** –0.052*** –0.046*** –0.039*** –0.030*** –0.018*
(0.006) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006) (0.008) (0.009)

Controls yes yes yes yes yes yes yes yes yes
Constant yes yes yes yes yes yes yes yes yes

*, *** significance at 10 and 1% level, respectively; N = 1 155; dependent variable is  agricultural N2O emissions; 
MMQR – Method of Moments Quantile regression; IEST – imports of environmentally sound technologies; AGN2O – 
agricultural N2O emissions; AGVA – agricultural productivity (agricultural value added); AGVASQ – squared term 
of agricultural value added
Source: Compiled and calculated by the authors using data from Our World in Data and World Development Indicator
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Table 5. MMQR estimations for the relationship between EEST and AGMETH

Variables
Quantiles

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90

EEST
–0.008 –0.007 –0.007 –0.006 –0.006 –0.005 –0.005 –0.004 –0.003
(0.029) (0.024) (0.022) (0.021) (0.020) (0.021) (0.021) (0.024) (0.030)

AGVA
5.113*** 4.531*** 4.249*** 3.900*** 3.627*** 3.368*** 3.119*** 2.737*** 2.046***

(0.427) (0.347) (0.321) (0.302) (0.294) (0.298) (0.313) (0.350) (0.445)

AGVASQ
–0.089*** –0.076*** –0.071*** –0.063*** –0.058*** –0.052*** –0.047*** –0.039*** –0.024**
(0.009) (0.008) (0.007) (0.007) (0.006) (0.007) (0.007) (0.008) (0.010)

Controls yes yes yes yes yes yes yes yes yes
Constant yes yes yes yes yes yes yes yes yes

**, *** significance at 5, and 1% level, respectively; N = 1 155; dependent variable is agricultural CH4 emissions; MMQR 
– Method of Moments Quantile regression; EEST – exports of environmentally sound technologies; AGMETH – 
agricultural methane emission; AGVA – agricultural productivity (agricultural value added); AGVASQ – squared 
term of agricultural value added
Source: Compiled and calculated by the authors using data from Our World in Data and World Development Indicator

Table 4 presents the results of the second model us-
ing MMQR. Similar to the effects observed with EST 
exports, the imports of EST are also positively and sig-
nificantly associated with agricultural N2O emissions 
across all nine quantiles examined. This suggests that 
importing countries may prioritise EST that addresses 
industrial and CO2 emissions, potentially neglecting 
technologies specifically targeted at  mitigating other 
GHGs such as  agricultural N2O emissions (Duxbury 
and Mosier 2022; Foong et al. 2022). Additionally, the 
adoption of new technologies often precipitates a  re-
bound effect, whereby increased efficiency leads to ex-
panded production rather than reduced emissions 
(Laborde et al. 2020; Khatri-Chhetri et al. 2023). In the 
agricultural context, this phenomenon could manifest 
as farmers utilising more efficient irrigation or fertilis-
er application systems to cultivate larger areas or inten-
sify production, ultimately resulting in elevated overall 
N2O emissions (Mamun et al. 2021; Du et al. 2023). 

The analysis reveals a notable disparity in the impact 
of EST trade on different agricultural greenhouse gas-
es. While the effects of EST imports and exports are 
statistically significant for N2O emissions, Tables 5–6 
indicate no  significant impact on  agricultural CH4 
emissions across any of  the examined quantiles. This 
finding suggests that methane emissions, primarily 
from livestock management and rice cultivation, re-
main largely unaffected by EST trade. This discrepancy 
can be attributed to several factors. Firstly, the rebound 
effect appears more pronounced for N2O-related ac-
tivities. The improvements in fertiliser efficiency might 
lead to expanded cultivation, thereby increasing N2O 

emissions. In  contrast, methane-producing activities 
such as livestock rearing are less likely to expand pro-
portionally with technological advancements (Zhen 
et al. 2023). Furthermore, this pattern may reflect a po-
tential bias in  EST development and trade towards 
technologies addressing soil and crop management 
practices, which primarily affect N2O emissions, rath-
er than those targeting livestock and rice cultivation 
methods that influence methane production. 

Robustness checks
In line with the proposition that the sector-specific 

approach is  more effective in  mitigating emissions, 
we  developed measures for sustainable agricultural 
imports (AGSEXP) and exports (AGSIMP) to  assess 
their potential in reducing agricultural emissions. The 
results, presented in  Table  S7 in  ESM, indicate that 
sustainable agricultural exports significantly mitigate 
N2O emissions, with the effect being more pronounced 
at higher quantiles. Similarly, Table S8 in ESM, dem-
onstrates that sustainable agricultural imports mitigate 
N2O emissions across all quantiles examined.

Regarding the impact of  AGSEXP and AGSIMP 
on  methane emissions, the results show some vari-
ation (see Tables S9 and S10 in ESM). This suggests 
that sustainable agricultural trade becomes increas-
ingly effective in  mitigating agro emissions as  emis-
sion levels surpass certain thresholds. Consistent with 
sectoral shift theory, our findings indicate that both 
imports and exports of EST specifically targeting the 
agricultural sector are effective tools in  addressing 
agricultural emissions. This evidence is partially sup-
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ported by Marcus and Nwaeze (2024), who found that 
efficient resource allocation toward the agricultural 
sector can reduce its emissions. This underscores the 
importance of  tailored approaches in environmental 
technology trade and implementation for achieving 
significant emission reductions in agriculture.

CONCLUSION 

Policy implications
This study examines how EST trade influences agri-

cultural emissions through the AKC framework, ana-
lysing panel data from 105 countries (2010–2020). Our 
findings, robust across DK and MMQR estimations, 
reveal that both EST imports and exports paradoxically 
increase agricultural N2O emissions, with effects vary-
ing across emission quantiles. The results confirm the 
AKC hypothesis, showing that agricultural emissions 
initially rise with productivity before declining beyond 
a threshold, driven by technique and composition ef-
fects through advanced farming practices.

Our analysis yields three key policy implications. 
First, the current EST development and trade frame-
work requires reorientation to  specifically target ag-
ricultural emissions. While existing ESTs effectively 
address industrial CO2 emissions, their impact on ag-
ricultural N2O and CH4 emissions is  limited or  po-
tentially counterproductive. Second, policymakers 
should develop sector-specific emissions reduction 
strategies that account for the unique characteristics 
of agricultural emissions, particularly focusing on pre-
cision agriculture and improved fertiliser management 

techniques. Third, countries need to  strengthen the 
integration between their industrial and agricultural 
environmental policies to prevent cross-sectoral emis-
sions leakage, ensuring that emission reduction in one 
sector does not lead to increases in another.

These findings underscore the need for a differenti-
ated approach to  environmental technology develop-
ment and implementation. Future EST policies should 
prioritise technologies specifically designed for agricul-
tural emission reduction, supported by comprehensive 
life-cycle assessments and tailored to  regional agri-
cultural practices. Such targeted interventions, would 
be more effective in addressing agricultural emissions 
while maintaining productive efficiency. 
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