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A  favourable ecological environment serves as  the 
foundation of  human survival and development. Con-
trolling greenhouse gas emissions has increasingly 
become an important strategic task for countries world-
wide (Bai et al. 2019). China committed to a dual-car-
bon target (attaining peak CO2 emissions by 2030 and 
achieving carbon neutrality by 2060) at the 75th United 
Nations General Assembly. For a long time, China has 
notably promoted green transformation of energy pro-
duction and consumption and low-carbon development 
of industries (Yang et al. 2022).

However, agriculture in  China has not yet com-
pletely changed from the high input–high output 
model. As  reported by  the United Nations Inter-
governmental Panel on  Climate Change, agriculture 
undoubtedly plays a  significant role in  the genera-
tion of  greenhouse gas emissions (Bongaarts 2019). 
Rapid agricultural development is often accompanied 
by high consumption of resources and excessive car-
bon emissions (Aliyu et al. 2019). China's agricultural 
carbon emissions account for 17% of its total carbon 
emissions. The overuse of  pesticides, fertilisers, and 
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diesel is the key reason for such high emissions (Alt-
ieri 2017; He et al. 2018).

Research on the causes of agricultural carbon emis-
sions has yielded fruitful results. Researchers have 
adopted the STIRPAT model to analyse and predict 
agricultural carbon emissions and have reported that 
the degree of  mechanisation and structural condi-
tions of agriculture are important influencing factors 
(Xiong et  al.  2020). Survey data from eight African 
countries reveal that the agricultural innovation ca-
pacity also greatly influences agricultural carbon 
emissions (Pamuk et al. 2014). In addition, the effects 
of  the scale of agricultural land operations (Koond-
har et  al.  2021), food prices (Pang et  al.  2021), ur-
banisation (Asif and Almagul 2022), and advances 
in agricultural technology (Han et al. 2018) have been 
demonstrated.

The integration of big data with high-carbon emis-
sion areas is  accelerating (Gohil et  al.  2021; Lee 
et al. 2022). This has yielded many innovations in ag-
ricultural production, such as  smart agriculture and 
precision agriculture. The application of  these new 
technologies can increase the agricultural produc-
tion efficiency and reduce resource consumption and 
environmental pollution levels (Huang et  al.  2019). 
To  achieve full mechanisation, precision and un-
manned operations are needed in  the four major 
fields of  farming, planting, management and har-
vesting, while agricultural development should rely 
more on  digisation to  build smart farms. Existing 
experimental test results indicate that, compared 
with those of  traditional mechanical operations, the 
digital farming efficiency is higher, and pesticide costs 
are reduced. Moreover, nearly half of the labour cost 
is  saved, and farmers can achieve foreign exchange 
increase, emission reduction, consumption reduc-
tion, and recycling (Northrup et  al.  2021). Overall, 
digital development can reduce agricultural carbon 
emissions by  encouraging innovation and updating 
agricultural production technologies (Hou et al. 2024; 
Zhou 2024). Unfortunately, studies of  the impact 
of the adoption of digital policies on agricultural car-
bon emissions are lacking.

On the basis of  the above analysis, the literature 
can be enriched as follows: First, the impact of digital 
policy implementation on  agricultural carbon emis-
sions can be examined. We chose the policy of the first 
digital economy pilot zone in China in a quasi-natural 
experiment to examine the systemic impact of its im-
plementation. Second, in  terms of  research methods, 
the application of  the difference-in-differences (DID) 

method in policy effect assessment can prevent endo-
geneity problems. Moreover, fixed-effect estimation 
can resolve the problem of the bias due to missing vari-
ables. Third, in terms of the intermediary mechanism, 
we  considered the financial expenditures on  science 
and technology and the number of  information prac-
titioners. By examining the mechanisms of action for 
agricultural carbon emissions, we increased the under-
standing of the factors influencing agricultural carbon 
emissions.

Theoretical framework
China approved the establishment of  two National 

Big Data Comprehensive Pilot Zone (NBDCPZ) batch-
es in February and October 2016, covering regions in-
cluding Beijing-Tianjin-Hebei, the Pearl River Delta, 
Shanghai, Henan Province, Chongqing Municipality, 
Shenyang Municipality, and the Inner Mongolia Au-
tonomous Region. The various tasks of  the NBDCPZ 
include promoting the application of big data, acceler-
ating the management and sharing of data resources, 
and facilitating the establishment of big data industrial 
clusters. In the agricultural sector, the implementation 
of  this policy contributes to agricultural emission re-
duction by promoting the collection, integration, anal-
ysis and application of agricultural data.

First, digitalisation can improve production and 
breeding methods in farmland systems, livestock sys-
tems and fishery systems (Braganza 2017; Acemoglu 
and Restrepo 2018). Digital technology can achieve 
visual management of  the entire process of  agricul-
tural production, precise irrigation, precise fertiliser 
application, precise feeding, and intelligent temper-
ature control management (Coble et  al.  2018; Astill 
et al. 2020). At the subsequent stages, digitisation can 
enhance monitoring, risk warning, and accounting 
of  farmland and pastureland (Lin et  al.  2022). This 
could help reduce the emissions of  pollutants such 
as particular matter 2.5 (PM) and CO2 from all areas 
of agriculture.

Second, digital platforms can link hundreds of mil-
lions of  participants and provide a  digital platform 
for agriculture that meets different needs. In-depth 
integration of digital technologies such as cloud com-
puting, big data and artificial intelligence with the 
agricultural industry can eliminate the data barriers 
between sectors, industries and levels and promote col-
laboration across the various links in  the agricultural 
industry chain of production, processing, logistics and 
consumption to reduce emissions comprehensively (Li 
et al. 2021). Ultimately, we can establish a new agricul-
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tural industry with a green low-carbon and ecological 
cycle as a starting point.

Here, we proposed H1 as  follows: The implementa-
tion of the NBDCPZ policy can promote the reduction 
in agricultural carbon emissions.

With policy support, the governments of the pilot re-
gions can increase their financial expenditures on sci-
ence and technology to renew agriculture, which can 
positively impact low-carbon agricultural development 
(Li et al. 2022; Liu et al. 2022). On the one hand, the 
financial expenditures on science and technology pro-
vide financial support for agricultural technological in-
novation, promote the upgrading and transformation 
of  agricultural technology, and ensure more environ-
mentally friendly and efficient agricultural production 
(Doranova et  al.  2010; Gallagher et  al.  2011). For ex-
ample, the development and application of agricultural 
technologies such as  water-saving irrigation, drought 
relief and pest control should be promoted, and energy 
consumption and carbon emissions during agricultural 
production should be reduced. On the other hand, the 
financial expenditures on science and technology also 
facilitate the development of agricultural informatisa-
tion and intelligence, increase data analysis and deci-
sion-making capabilities in the agricultural production 
process, encourage optimisation of  the agricultural 
production structure, and promote carbon emission 
reduction (Han et al. 2018).

A total of EUR 7.96 billion has been invested in infor-
mation infrastructure construction in the pilot zones, 
and the level of  information infrastructure develop-
ment has steadily increased. The number of  informa-
tion practitioners has also increased substantially. 
Practitioners exhibit notable digital technology and 
data analysis capabilities, and they can provide more 
accurate and scientific services for agricultural produc-
tion. Specifically, an  increase in  the number of  infor-
mation practitioners can reduce agricultural carbon 
emissions as  follows: On  the one hand, information 
practitioners can promote the application of  green 
agricultural technology among farmers through infor-
mation platforms and smart devices and guide them 
to adopt environmentally friendly and low-carbon ag-
ricultural production methods to reduce carbon emis-
sions (Lee et al. 2022). On the other hand, information 
practitioners can employ information technology 
to  establish agricultural carbon emission monitoring 
systems, monitor carbon emissions in the agricultural 
production process in real time and provide a basis for 
the formulation of targeted emission reduction strate-
gies (Astill et al. 2020). Through digitisation and infor-

mation services, farmers can more easily connect to the 
large market and better understand the specific needs 
of the market for green agricultural products. This can 
not only reduce the waste of agricultural resources but 
also encourage farmers to reduce the use of chemicals 
such as pesticides (Amiri-Zarandi et al. 2022).

Accordingly, we  proposed H2 as  follows: Financial 
expenditures on science and technology and the num-
ber of information practitioners are intermediary fac-
tors influencing policy implementation.

In 2001, to adapt to changes in the grain production 
and distribution pattern, China divided all provinces 
into three categories, namely, major grain-producing 
areas, major grain-selling areas and production–mar-
keting balance areas, so that advantageous grain pro-
duction areas can consistently exert their geographical 
resource advantages and ensure the gradual increase 
in  the grain production capacity. This division could 
influence policy effectiveness.

The natural landscapes in  northern and southern 
China exhibit notable contrasts. North China experi-
ences a  dry climate, with relatively low precipitation 
in  most areas and a  relative lack of  surface water re-
sources. South China, however, exhibits a  humid cli-
mate with abundant rainfall and relatively abundant 
water resources. These differences are also reflected 
in agricultural production. Farmers in North China face 
drought and water scarcity when growing crops and re-
quire crop varieties that are drought and cold resistant 
and highly resilient, whereas farmers in  South China 
are more likely to  grow moisture-tolerant crops such 
as rice and vegetables (Wang et al. 2020; Ma and Chen 
2022; Zhu et al. 2022). In addition, the climate in South 
China is suitable for two or three crop seasons through-
out the year, whereas in North China, there is mostly 
only one crop season with a short planting period.

Through the above analyses, we proposed H3 as fol-
lows: The impacts of NBDCPZ policy implementation 
exhibit heterogeneity. 

MATERIAL AND METHODS

Econometric modelling
The DID method is  increasingly favoured as  a  tool 

in  policy effect assessments. The basic principle en-
tails the estimation of  the net effect of a given policy 
by comparing the differences between the experimen-
tal and control groups before and after policy imple-
mentation, as shown in Figure 1.

In this study, we  considered the NBDCPZ policy 
in a quasi-natural experiment and examined the impact 
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of policy implementation on agricultural carbon emis-
sions via the DID method. We selected pilot provinces 
as samples. The specific model settings are as follows:

where: Yit – denotes the agricultural carbon emis-
sions in province i during period t; DIDit – denotes 
the policy pilot shock; moreover, the pilot provinces 
constitute the experimental group, while the nonpilot 
provinces comprise the control group. In  addition, 
α – constant term; β and δ – parameters to be esti-
mated; Xit – time-varying control variable; μi – city 
fixed effect; γt – fixed effect in  the corresponding 
year; εit – random error term.

Data sources
The analysis in  this study is  based on  panel data 

from provinces, autonomous regions and cities 
in  China from 2011–2021. The experimental group 
encompasses the provinces directly affected by NBD-
CPZ policy implementation. In contrast, the provinc-
es in the control group are not affected by NBDCPZ 
policy implementation. All data were derived from 
the China Statistical Yearbook, China Rural Statis-
tical Yearbook, China Agricultural Statistical Year-
book, and the statistical yearbooks of  the provinces, 
autonomous regions and cities.

Description of variables
Explained variables. We used the carbon emission 

coefficient method of the United Nations Intergovern-
mental Panel on  Climate Change (IPCC) to  measure 
agricultural carbon emissions in each province, mainly 
considering the following six aspects: carbon emissions 
in the cultivation process mainly originate from the use 

of pesticides, fertilisers, agricultural films, machinery, 
irrigation and ploughing. The total agricultural carbon 
emissions (C) can be calculated via Equation (2).

where: Ei – carbon emissions originating from source i; 
δi – carbon emission factor for source i; the carbon 
emission coefficients are listed in Table 1.

Explanatory variables. To  better manifest the 
role of  big data in  promoting high-quality eco-
nomic development, the State Council established 
two batches of  a  total of  10 provinces on  the basis 
of the Outline of Action for Promoting the Develop-
ment of  Big Data in  2016, which provides suitable 
quasi-natural experimental conditions for this study. 
The core explanatory variable of  this study is  the 
policy shock (DIDit). Notably, when city i is  select-
ed as a pilot area in year t, DIDit is assigned a value 
of 1 in year t and the years thereafter. Otherwise, the 
value is 0. The regression coefficient of DIDit reflects 
the degree of  change in  agricultural carbon emis-
sions before and after pilot policy implementation, 
which is the focus of this study.

Control variables. To  increase the estimation effi-
ciency of the regression model, the following variables 
were included: the plantation area (Zhao et  al.  2010; 
Tian et al. 2015), crop disaster area (Davis et al. 2015), 
total agricultural output value (You and Wu 2014), 
number of  large and medium-sized agricultural trac-
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Figure 1. Schematic representation of the DID method

it it it i t itY DID X= α +β + δ +µ + γ + ε (1)

(2)

Table 1. Carbon emission coefficients

Carbon emission 
coefficient (CO2) Value Unit Reference

Fertilisers 0.8956 kg/kg West and Marland 
(2002)

Pesticides 4.9341 kg/kg West and Marland 
(2002)

Agricultural films  5.1800 kg/kg Tian et al. (2011)

Diesel 0.5927 kg/kg Wang and Zhang 
(2016)

Cultivated land 312.6000 kg/ha  Wu et al. (2007)

Irrigation 266.4800 kg/ha West and Marland 
(2002)

Source: Generated by the authors

Carbon Carboni i iE= = ×δ∑ ∑
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tors (Dong et  al.  2013), cereal production (Xiong 
et  al.  2019), retail price index of  food commodities, 
fiscal expenditure on  environmental protection, and 
proportion of the value added by the tertiary industry.

Table 2 provides descriptive statistics of the chosen 
variables. Agricultural carbon emissions constitute the 
core variable, and in  the observations, the minimum 
value is  14.37, and the maximum value is  995.75, in-
dicating a large difference in agricultural carbon emis-
sions. Moreover, the mean value is  368.29, and the 
standard deviation is  223.26. The standard deviation 

is large, indicating that the distribution of agricultural 
carbon emissions is relatively dispersed and highly vol-
atile. This provides sufficient variability for DID analy-
sis to help identify policy effects. 

RESULTS

Basic regression
Table 3 provides the modelling results for the impact 

of  the implementation of  the NBDCPZ policy on the 
level of agricultural carbon emissions. The regression 

Table 2. Descriptive statistics

Variables N Min. Max. Mean SD
Plantation area (10 000 ha) 297 4.88 733.53 278.46 177.85
Crop disaster area (1 000 ha) 297 3.60 4223.7 836.06 756.70
Total agricultural output value (EUR 10 · 108) 297 6.30 833.21 262.19 166.90
Number of large and medium-sized agricultural tractors 297 2 900.00 1 060 600.00 193 610.04 206 225.84
Cereal production (tonnes) 297 62.95 7 104.39 2 184.97 1 770.63
Value added of the tertiary industry (EUR 10 · 108) 297 4.40 878.02 157.38 154.09
Financial expenditure on education (EUR 10 · 107) 297 9.88 481.88 112.07 75.53

Number of urban units employed in information transmission, 
software and information technology development services  
(10 000 persons)

297 0.20 80.60 9.65 10.74

Financial expenditure on science and technology (EUR 10 · 107) 297 0.43 148.34 15.35 21.47
Proportion of the value added of the tertiary industry 297 0.33 0.62 0.48 0.06
Fiscal expenditure on environmental protection (EUR 10 · 107) 297 16.05 747.44 147.20 100.29
Retail price index of food commodities 297 99.30 117.70 103.00 3.57
Agricultural carbon emissions 297 14.37 995.75 368.29 223.26

Source: Obtained by the author

Table 3. Benchmark regression results

Variables
Model 1 Model 2 Model 3 Model 4

(1) (2) (3) (4)

DID –36.6197***
(–5.9300)

–14.8811*
(–2.3700)

–18.1064***
(–3.3700)

–11.4993*
(–2.1100)

Cons. 371.8688***
(227.2100)

362.7358***
(81.7200)

498.3870***
(8.3200)

311.7248**
(2.9300)

R2 0.0267 0.2468 0.3606 0.4196
Control no no yes yes
City FE no yes no yes
Year FE no yes no yes
Observations 297 297 297 297

*, **, ***P < 0.05; 0.01; 0.001, respectively; T statistics are provided in parentheses; DID – difference-in-differences; FE – 
fixed effects
Source: Obtained by the author
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results indicated that with every 1% increase in  the 
degree of  policy implementation, agricultural carbon 
emissions decreased by 11.4993%.

Robustness test
Flat trend detection. Before policy implementation, 

the treatment and control samples selected for em-
pirical analysis should exhibit parallel trends. The test 
results are shown in Figure 2. Notably, the confidence 
intervals fluctuated around 0 before policy imple-
mentation. This result indicates that the parallel trend 
hypothesis is valid and meets the premise of the appli-
cation of the DID method.

Individual placebo test. Considering the exist-
ence of  10 pilot provinces in  benchmark regression, 
10 provinces were selected herein as  the pseudo-ex-
perimental group, and the other provinces constituted 
the pseudo-control group. To ensure more robust and 
reliable placebo test results, the above process was re-
peated 500 times. The results are shown in Figure 3, 
and most of the spurious regression coefficients reach 
a value of approximately 0 and obey a normal distri-
bution. The regression coefficient (–11.4993) of  the 
policy dummy variables in  Column (4) of  Table  3 
of  the basic regression model does not occur within 
the distribution range of the values of the false regres-
sion coefficient. Therefore, the base regression results 
pass the placebo test.

Time placebo test. Column (1) of Table 4 provides 
the time placebo test results. We predefined policy im-
plementation 1 year before, and the results showed that 
policy implementation did not significantly promote 
the reduction in agricultural carbon emissions in  the 
time counterfactual test. Notably, there was no system-
atic temporal trend difference between the experimen-
tal and control groups.

Exclusion of other major policies. Moreover, with 
respect to policy implementation, other policies were 
implemented in  the experimental area, which may 
cause interference in the final results. Overall, the zone 
with the greatest direct impact on agricultural carbon 
emissions was the Ecological Civilisation Pilot Zone 
in 2016. The first provinces selected as national pilot 
zones include Fujian, Jiangxi and Guizhou Provinces. 
To assess the net effect of NBDCPZ policy implemen-
tation, we excluded the data of these provinces. The re-
gression results are provided in Column (2) of Table 4, 
indicating significance.

Endogeneity test. We adopted the Propensity Score 
Matching (PSM) method. The PSM method was em-
ployed to establish more balanced treatment and con-
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Table 4. Results of the exclusion of critical incident inter-
ference testing

Variables
Time placebo 

test
Exclude other 

policies DID+PSM

(1) (2) (3)

DID –6.0079
(–0.9300)

–11.8699*
(–2.0000)

–16.4420**
(–2.6200)

Cons. 318.5622**
(2.9700)

353.1525**
(2.9000)

332.3708***
(10.7700)

R2 0.4113 0.4015 0.4663
Control yes yes yes
City FE yes yes yes
Year FE yes yes yes
Observations 297 264 226

*, **, ***P < 0.05; 0.01; 0.001, respectively; T statistics are 
provided in parentheses, DID – difference-in-differences; 
PSM – Propensity Score Matching; FE – fixed effect
Source: Obtained by the author

Figure 2. Dynamic parallel trends

Source: Generated by the author
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Figure 3. Placebo test

Source: Generated by the author
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trol groups, and DID analysis of the matched samples 
was then conducted to more accurately estimate the ef-
fect of policy implementation on reducing agricultural 
carbon emissions. The use of this method helps to elim-
inate potential selection bias, solve endogeneity prob-
lems, and increase the reliability of causal inference.

Through the comparison of  the experimental cal-
liper and proximity matching results, we determined 

that nuclear density matching can guarantee the clos-
est match before and after matching, and the estima-
tion results are more accurate. The empirical test data 
in Column (3) of Table 4 were obtained via PSM pair-
ing, and the nuclear density matching technique was 
used to process the samples; then, the samples were 
retested. The results showed that the regression coef-
ficients are all negative and statistically significant.

Table 5. Intermediary mechanism test

Variables

Agricultural  
carbon  

emissions

Financial expendi-
ture on science  
and technology

Agricultural 
carbon  

emissions

Number of  
information  
practitioners

Agricultural  
carbon  

emissions

(1) (2) (3) (4) (5)

DID –11.4993*
(–2.1100)

83.7082***
(5.3600)

–11.0941*
(–2.1300)

5.1908***
(5.5800)

–10.7089*
(–2.0400)

Financial expenditure 
on science and technology – – –0.0628***

(–3.4100) – –

Number of information 
practitioners – – – – –0.8959**

(–2.7300)

R2 0.4196 0.5668 – 0.4756 –
Control yes yes yes yes yes
City FE yes yes yes yes yes
Year FE yes yes yes yes yes
Observations 297 297 297 297 297

*, **, ***P < 0.05; 0.01; 0.001, respectively; T statistics are provided in parentheses; DID – difference-in-differences; FE – 
fixed effect
Source: Generated by the author

Table 6. Results for the major grain-producing areas and other provinces

Variables Major grain-producing areas Production marketing  
balance areas Major grain-selling areas

(1) (3) (2)

DID –26.4684***
(–3.4000)

–21.8507
(–1.8900)

–6.0499
(–1.2900)

Constant 664.9345***
(3.5200)

215.1692
(1.6300)

180.7969
(1.4100)

R2 0.6271 0.4262 0.9073
Control yes yes yes
City FE yes yes yes
Year FE yes yes yes
Observations 143 110 44

*, **, ***P < 0.05; 0.01; 0.001, respectively; T statistics are provided in parentheses; DID – difference-in-differences;  
FE – fixed effect
Source: Generated by the author
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Intermediary mechanism results
We added the mediating variables in sequence in fur-

ther regression analysis to explore whether these vari-
ables played a role. In the identification of intermediate 
effects in Column (2) of Table 5, the empirical results 
indicated that the policy helps increase the financial 
expenditure on  science and technology. The  results 
in Column (3) of Table 5 indicate that with policy im-
plementation, the financial expenditure on science and 
technology increases, and agricultural carbon emis-
sions decrease.

In the identification of intermediate effects in Col-
umn (4) of  Table  5, the empirical results revealed 
that the regression coefficient of  the NBDCPZ for 
the number of  information practitioners is  positive. 
The results in Column (5) of Table 5 showed that the 
influence coefficient of  the increase in  the number 
of  information practitioners on  agricultural carbon 
emissions is significantly negative, which confirms its 
mediating role.

Heterogeneity test results
Distinguishing between different types of  grain 

production areas. The results provided in Table 6 in-
dicate that inhibitory effects of policy implementation 
occur only in the main grain-producing areas but not 
in the main grain-selling areas or the production mar-
keting balance areas. 

Distinguishing between northern and southern 
provinces. The results in Table 7 reveal that the policy 
effectiveness of  southern provinces in  China is  more 
significant than that of northern provinces.

DISCUSSION

On the basis of  a  quasi-natural experiment involv-
ing the NBDCPZ policy of  China, we  found that 
digital policy implementation can help reduce agricul-
tural carbon emissions. This once again confirms the 
contribution of  digital development to  environmen-
tal sustainability (Lee et  al.  2022; Yi et  al.  2022; Hou 
et  al.  2023; Zhou and Liu 2024). This study provides 
guidelines for China's sustainable development strat-
egy and has important implications for the formulation 
and implementation of similar policies worldwide, es-
pecially in developing countries.

Specifically, we found that in the pilot areas, to bet-
ter implement the policy, the government's financial 
expenditure on  science, as  an  important part, in-
creases accordingly. This occurs because to guide the 
development of the digital economy, science and tech-
nology have become key areas of financial expenditure 
and priority protection. The impact of fiscal expendi-
ture on science on agricultural carbon emissions may 
be  reflected in  the following aspects: First, fiscal ex-
penditure on  science positively affects technological 
innovation. This provides technical conditions for pre-
cise agricultural planting and precise fertilisation, in-
cluding the research and development and promotion 
of new varieties, disease and pest control, water-sav-
ing irrigation and other technologies (Zhu et al. 2023). 
These technologies help increase agricultural produc-
tion efficiency and reduce the input of carbon sources 
such as fertilisers and pesticides, thus reducing agricul-
tural carbon emissions (Li et al. 2022; Liu et al. 2022). 
Second, agricultural carbon emission monitoring and 
assessment capacities should be  enhanced. Financial 
expenditures on science and technology can be used 
to  support the research and development of  agricul-
tural carbon emission monitoring and assessment 
technology and increase the understanding and sys-
tematic management of agricultural carbon emissions 
(Zhao et al. 2023).

Moreover, we  found that the construction of pilot 
zones promoted an  increase in  information practi-
tioners. The possible reason is that the governments 
of  pilot areas paid attention to  the overall planning 
and opening of public data, created a big data inno-
vation ecology, and strengthened the agglomeration 

Table 7. Analysis of heterogeneity between North China 
and South China

Variables
Northern provinces Southern provinces

(1) (2)

DID –10.7521*
(–2.5900)

–33.8951***
(–3.5200)

Cons. 259.7023*
(2.3200)

323.9634***
(9.5900)

R2 0.7663 0.4117

Control yes yes

City FE yes yes

Year FE yes yes

Observa-
tions 143 154

*, ***P < 0.05; 0.001, respectively; T statistics are provided 
in parentheses; FE – fixed effect
Source: Generated by the author
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and development of  the big data industry (Qiu and 
Zhou 2021; Xu et al. 2022). This could attract many 
information practitioners and increase the demand 
for information practitioners.

The combined effect of  these factors promoted 
an  increase in  the number of  information practition-
ers in  the pilot zones, which directly increases the 
level of information services in the region. An increase 
in  information practitioners, especially those related 
to  agricultural informatisation and digitalisation, can 
promote the digital transformation of agriculture, in-
crease agricultural production efficiency, reduce the 
resource consumption per unit output, and thus help 
reduce agricultural carbon emissions (Henderson 
et al. 2020; Yang et al. 2023).

In terms of  regional heterogeneity, this study re-
vealed that the policy effect is pronounced in the major 
grain-producing regions, whereas it  is  less significant 
in  both the major grain-selling areas and production 
marketing balance areas. This difference could stem 
from the fact that the major grain-producing regions 
are largely focused on grain cultivation, with relatively 
concentrated agricultural production. This concentra-
tion facilitates the implementation and oversight of big 
data technology, thereby rendering a greater policy ef-
fect. Moreover, as important areas of agricultural pro-
duction, the main grain-producing areas may receive 
more attention and resource input from the govern-
ment. This promotes the implementation of  relevant 
policies in the major grain-producing areas, and the al-
location of resources is more reasonable and adequate.

In addition, there are differences in  the impact 
of  policy implementation on  agricultural carbon 
emissions between the northern and southern prov-
inces. This may be due to the following factors: 

i) Southern provinces experience a  warm and hu-
mid climate with a  long crop growth cycle and two 
or  three crops per year as  the main planting system 
features, whereas northern provinces exhibit a  rela-
tively cold and dry climate with a short crop growth 
cycle and mostly one crop per year (Wang et al. 2020; 
Ma and Chen 2022; Zhu et  al.  2022). This results 
in notable crop growth, high photosynthesis, and high 
carbon uptake in the southern provinces but relatively 
low levels in the northern provinces. 

ii) Mainly crops with high carbon absorption ca-
pacity, such as rice, are grown in the southern prov-
inces, whereas mainly wheat, corn and other crops 
are grown in the northern provinces. The carbon se-
questration capacity of  different crops varies (Bau-
mann et al. 2017). 

iii) The culture in  the southern provinces is  more 
open and diverse, with a  focus on  innovation and 
change. This cultural background may render southern 
farmers more receptive to new policies and ideas.

Finally, there are still limitations in  our study con-
cerning the sample size, data quality, and temporal 
scope, which may influence the results. In  future en-
deavours, we  will more thoroughly analyse these dif-
ferences by  acquiring more granular data (including 
municipal-level data and extending the time frame).

CONCLUSION

Via the use of the DID method, we systematically 
explored the impact of the implementation of Chi-
na's National Big Data Integrated Pilot Zone policy 
on agricultural carbon emissions for the first time, 
revealing the potential of  big data policies for re-
ducing agricultural carbon emissions. This finding 
provides a new perspective for digital policy-makers 
worldwide, highlighting the important role of  big 
data technology in  tackling climate change and 
sustainable development. The intermediary mech-
anism test results revealed that the financial expen-
ditures on science and technology and the number 
of information practitioners played significant roles 
in  reducing agricultural carbon emissions. Hetero-
geneity analysis was conducted to  explain regional 
differences.

On the basis of the conclusions and analysis results, 
we  believe that in  the process of  policy implementa-
tion, we should account for several problems to max-
imise policy effectiveness.

i) Policy-makers should encourage and support the 
broad application of  big data technology in  agricul-
ture, especially in  the monitoring, management and 
optimisation of agricultural carbon emissions.

ii) Governments should invest more in the research 
and development of  agricultural technologies, es-
pecially those that help reduce carbon emissions. 
Through the establishment of  special funds, tax in-
centives and other measures can encourage agricul-
tural enterprises  and scientific research institutions 
to conduct research and development and the appli-
cation of low-carbon agricultural technologies.

iii) The government should strengthen the train-
ing and introduction of  information practitioners 
to  increase the level of  agricultural informatisation. 
Through the establishment of  scholarships, the crea-
tion of  training opportunities and other measures 
to attract more talent for agricultural informatisation 
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can provide technical support for reducing agricultur-
al carbon emissions.

iv) When relevant policies are formulated, policy-
makers should fully consider the differences and par-
ticularities between regions. For different regions, 
differentiated policies should be formulated according 
to their actual conditions to ensure policy effectiveness 
and sustainability.
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viewers and our colleagues.
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