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Abstract: To achieve the coveted objectives of sustainable development, the Bangladesh government has devised a 
comprehensive strategy to promote the adoption of innovative agricultural practices capable of addressing the critical 
challenges at the intersection of food, energy, water, and ecosystems (FEWE). This plan prioritises the increased uptake 
of solar irrigation and recommended fertiliser application (SIRFA) technologies to enhance sustainable food production 
while effectively managing energy and water resources, and fostering ecological balance. Thus, this study analysed seven 
years of panel data (2015–2021) to assess the long-term impact of SIRFA technology adoption on production costs (PC) 
and return on investment (ROI) among Bangladeshi farmers cultivating the BRRI-dhan29 rice variety in the water-
-scarce, acidic soils of Dinajpur. Utilising the generalised estimating equation (GEE) with a population-averaged model,
we investigated the determinants of adoption. Additionally, we applied a two-stage residual inclusion (2SRI) method
alongside six linear panel-data models to analyse the impact of SIRFA adoption. Our findings revealed that adopters
experienced reduced production costs and enhanced ROI through SIRFA technology adoption. These results emphasi-
sed the urgent need for region-specific policy interventions to facilitate the broader adoption of SIRFA technologies.

Keywords: correlated random effect (CRE); linear panel-data models; population-averaged (PA) model; recommended 
fertiliser dosage; solar irrigation; two-stage residual inclusion (2SRI)

Economic activities are influenced by  environmen-
tal conditions that dictate resource production and 
waste management capabilities. Environmental ser-
vices, such as air, water, and biomass, are vital for hu-
man prosperity and economic growth (Morales-García 
and Rubio 2023). As the global population is projected 
to reach 10 billion by 2050 (Suzuki 2019), energy and 
food demands will rise, consequently increasing water 
requirements. The food, energy, water, and ecosystems 
(FEWE) framework underscores the interconnec-
tions among these sectors, facilitating the evaluation 

of trade-offs and synergies that promote ecological bal-
ance and long-term sustainability (Probst et al. 2024). 
The FEWE nexus has emerged as a crucial framework 
for reconciling diverse interests in resource allocation 
across sectors and civil society. It  fosters an  intricate 
understanding of  interdependencies, ultimately seek-
ing integrated solutions in  alignment with the sus-
tainable development goals (SDGs) (Brouwer et  al. 
2018; Karim and Daher 2021). To  enhance resilience 
in agricultural infrastructure in developing countries, 
it  is essential to  transform practices into sustainable 
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components and shift our perception of human secu-
rity, emphasising the establishment of robust resource 
management systems. Economically viable and socially 
acceptable practices aim to  mitigate environmen-
tal harm from intensive agricultural input use while 
maximising the efficient utilisation of  renewable and 
farm-based resources, thus epitomising sustainable 
agriculture (Zilberman et al. 1997; Pretty 2008). More-
over, savings from reduced input use can be reinvest-
ed in  long-term growth, where return on  investment 
(ROI) drives the development of resilient systems rath-
er than merely assessing the financial viability of spe-
cific strategies (Meuwissen et  al. 2019; Sunny et  al., 
2022b). Various agricultural and managerial strategies 
promoting sustainable practices within the framework 
of the FEWE nexus encompass efficient water manage-
ment systems, renewable irrigation technologies, soil 
quality assessment tools, diversified cropping meth-
ods, judicious fertiliser application, disease-resistant 
and climate-adapted varieties, integrated pest man-
agement (IPM), agroforestry, cover cropping, and 
resource-conserving, scale-appropriate agricultural 
machinery (Gomiero et al. 2011; Mottaleb 2018; Sunny 
et al. 2022b). In developing countries like Bangladesh, 
agriculture serves as  a  crucial development engine, 
supporting 37% of the workforce and providing suste-
nance for 70% of the population (Imdad 2021; Trading 
Economics 2024). The government has facilitated the 
proliferation of agricultural technologies, such as  fer-
tiliser subsidies and diesel tax exemptions, to enhance 
farm productivity (Pearson et  al. 2018). This has sig-
nificantly increased fertiliser utilisation and expanded 
total irrigated acreage (IMF 1998). However, these 
policy reforms have adversely affected resource avail-
ability, environmental health, and farmers’ economic 
conditions, particularly in regions experiencing water 
and energy crises. Diesel-powered irrigation systems 
exhibit suboptimal pumping efficiency, driving up op-
erational costs, while electric systems, although more 
economical, impose energy constraints on the national 
grid. This, coupled with uneven fertiliser applications, 
detrimentally affects human and environmental well-
being (Dey et al. 2017; Rahman and Zhang 2018; Islam 
et al. 2022).

To mitigate environmental impacts, the Bangla-
deshi government has devised a comprehensive strat-
egy promoting sustainable agricultural development, 
emphasising the adoption of  innovative farm man-
agement technologies. This approach prioritises effi-
cient water and fertiliser usage to enhance cereal crop 
yields (FPMU 2021; MOA 2020). The global adoption 

of solar irrigation technology is growing as countries 
seek to lessen their reliance on non-renewable energy 
sources. Solar-powered irrigation systems offer a more 
cost-effective and sustainable alternative to tradition-
al fossil fuels, alleviating the burdens on  small-scale 
farmers grappling with rising fuel costs and pressure 
on  national resources. However, most rural farmers 
lack access to grid electricity, making solar irrigation 
particularly attractive. Additionally, the recommend-
ed fertiliser application framework leverages scien-
tific insights into nutrient production and absorption, 
thereby enhancing output quality and quantity while 
minimising adverse environmental effects (Sunny 
et  al. 2022b). Besides, widespread implementation 
of  solar irrigation technology could reduce carbon 
dioxide emissions by  20.8 million tonnes, contribut-
ing to sustainability (Hashim 2023). Optimal fertiliser 
management could increase crop yields by  8–14%, 
yielding an annual financial benefit of USD 1.8 million 
(Chen et al. 2022). Thus, efforts to promote careful fer-
tiliser application are underway, with plans to  install 
50 000 solar-powered irrigation pumps in various ar-
eas, targeting a 75% operational rate by 2030 (Chowd-
hury 2020).

Research indicates that agriculturalists are inclined 
to  adopt innovative technologies when the benefits 
markedly outweigh the drawbacks. Acknowledging 
these enduring advantages can catalyse the exploration 
of alternatives. Despite abundant literature addressing 
various agricultural practices that enhance farmers’ 
well-being, impact assessments concerning the adop-
tion of solar irrigation and recommended fertiliser ap-
plication (SIRFA) technologies remain notably sparse. 
Therefore, the aim of  this research was to  rigorously 
examine the extent to  which the adoption of  SIRFA 
technologies confers advantages upon farmers.

While three previous studies have focused on  this 
subject within the same geographical region, two have 
employed single-year data, whereas the third utilised 
panel data. The inaugural study by Sunny et al. (2022c) 
examined the determinants influencing Boro rice 
farmers’ decisions regarding the adoption of  recom-
mended fertiliser dosages. It  identified significant in-
fluences such as farmers’ age, land typology, soil water 
retention, knowledge, and the availability of cow dung. 
The second study by Sunny et al. (2022a) investigated 
the drivers and impacts of  solar irrigation facilities 
(SIFs) adoption on  irrigation costs, return on invest-
ment (ROI), and production cost (PC). The results 
demonstrated that farmers embracing this method 
could reduce irrigation costs by  between 1.88% and 
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2.22%, achieve a 4.48% to 8.16% enhancement in ROI, 
and lower overall PC by  between 0.06% and 0.98% 
compared to  non-adopters. Additionally, it  revealed 
that factors such as  farming experience, knowledge, 
environmental awareness, soil fertility, and ownership 
of  irrigation machinery significantly swayed adoption 
decisions. In  contrast to  the aforementioned studies, 
our manuscript’s principal distinction lies in its inves-
tigation of the long-term effects of adoption, utilising 
a  seven-year panel dataset, as  opposed to  the one-
year data employed in  previous works that focused 
on short-term evaluations.

The third study by Sunny et al. (2023) also employed 
a  seven-year panel dataset and addressed endogene-
ity; however, it  concentrated solely on  the adoption 
impact of solar irrigation technology. In contrast, the 
contribution of this manuscript lies in its comprehen-
sive examination of SIRFA as an integrated technologi-
cal suite. This research evaluates the synergistic effects 
of both technologies, presenting a cohesive assessment 
of  their collective impact on  productivity and ROI. 
Such an  approach provides a  deeper understanding 
of how technological integration can enhance econom-
ic performance within agriculture.

While the aforementioned studies examined com-
parable regions, this manuscript specifically accentu-
ates the implementation and scaling of  SIRFA tech-
nologies within a more localised context. This analysis 
centres on how soil characteristics and tailored policy 
recommendations can stimulate technology adop-
tion, an  area that has received insufficient attention 
in prior works. This thorough examination offers re-
gion-specific policy interventions targeting localised 
challenges alongside strategies to  promote broader 
adoption of  SIRFA technologies through customised 
recommendations that address the socio-economic 
and environmental hurdles encountered by  farmers, 
extending beyond the general factors of adoption dis-
cussed in previous studies.

Furthermore, this paper employed advanced statisti-
cal methodologies, including the generalised estimat-
ing equation (GEE) and two-stage residual inclusion 
(2SRI). These approaches facilitate a  more precise 
handling of  endogeneity and bias, thereby providing 
a robust and nuanced understanding of the long-term 
effects associated with adopting SIRFA technologies. 
Moreover, our manuscript’s longitudinal perspective 
effectively captures temporal variations that short-
term studies might overlook. Understanding the long-
term ramifications of  technology adoption is  crucial, 
particularly in  the context of  complex agricultural 

practices; without such knowledge, farmers may be re-
luctant to embrace sustainable technologies.

Finally, our study region is  characterised by  acidic 
soil conditions that significantly impact overall produc-
tion cost, including fertilisation and irrigation costs. 
Therefore, grasping the adoption impacts of  these 
technologies is  vital for fostering sustainable agricul-
tural development in the area. Ultimately, this research 
enriches the existing body of  literature by  offering 
critical insights for policymakers aimed at  advancing 
the implementation of  SIRFA technology in  regions 
suffering from water scarcity and acidic soils, thus en-
hancing farmers’ welfare and ensuring the long-term 
sustainability and productivity of agricultural systems 
in Bangladesh.

MATERIAL AND METHODS

Study area, sampling procedure, and data source. 
This study focuses on Dinajpur for several compelling 
reasons. The tropical wet-dry climate in  this north-
western region, which encompasses the largest of the 
nation’s sixteen districts, faces significant food scarcity 
and pervasive poverty. Furthermore, rice cultivation 
occupies 41.40% of the net-planted area, with Boro rice 
being the predominant variety (Shirazy et  al. 2018). 
We  selected the BRRI- dhan29 rice due to  its higher 
acceptability compared to other Boro varieties in our 
research area (BRRI 2019). Most importantly, given 
the acidic soils in these regions, it was crucial to anal-
yse the long-term impact of SIRFA adoption on agri-
cultural productivity (Islam et  al. 2017; SRDI 2020). 
Policymakers must grasp the variations in sustainable 
water and fertiliser management practices among dif-
ferent agroecological zones (AEZ) to  inform effective 
decision-making. To procure our sample, we first uti-
lised a randomised sampling technique to select three 
sub-districts (Birganj, Khanshama, and Kaharol) from 
the thirteen within Dinajpur. We then determined the 
sample size using the Krejcie and Morgan formula, 
detailed in Equation (1). Here, s represents the sample 
size, N denotes the population of 643 431, χ2 is 3.841 
(corresponding to a 95% confidence interval with one 
degree of freedom), P  is 0.50 (the population propor-
tion yielding maximum variance), and d is  0.05 (the 
margin of  error), as  recommended by  statistical ex-
perts (Krejcie and Morgan 1970).

 
   

2

2 2

χ 1
 

1 χ 1
NP P

s
d N P P




   	 (1)
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The calculated sample size (n) was 384. However, 
we  gathered an  additional 5% of  samples to  prevent 
unforeseen future issues. Hence, 135 farmers were ran-
domly chosen from each sub-district in the initial phase 
between February and April 2015. These farmers con-
sented to annual interviews until 2021, leading to  the 
formation of  a  well-balanced panel comprising 2  835 
farmers. Interviews were scheduled between December 
and June, aligning with the peak of rice production dur-
ing the Boro Season (BBS 2020). The sample was cat-
egorised into two groups: adopters and non-adopters, 
based on their irrigation practices and the application 
of chemical fertiliser for the BRRI-dhan29 rice variety, 
with usage ranging from 336 to 525 kg/ha (BRRI 2021).

Determinants of  SIRFA technologies adoption. 
SIRFA technology adoption by farmers followed a dis-
crete choice model using latent variables. The rationali-
ty hypothesis states that farmers adopt new technology 
if it  increases their expected utility (Hess et al. 2018). 
The utility function is not directly observable. Model-
ling SIRFA technology adoption requires inferring the 
unobservable utility function Yit* that drives the i-th 
farmer’s decision-making at time t by analysing post-
adoption behaviour (Cramer 2003). The untapped po-
tential of a  farmer’s decision-making process, as cap-
tured through the lens of a binary choice model, can 
be articulated as follows:

* * *  β ν εit it i itY X    ; where 
*1 if 0 

   0 otherwise
it

it

Y
Y

>= 


	 (2)

For Equation (2), Yit* is  described earlier, β* is  the 
function of Xit explanatory variables.

The error term, denoted by εit*, is a random aberra-
tion that is  independent of  the explanatory variables 
and adheres to  a  normal distribution, and vi denotes 
time-invariant unobserved effects that are inherently 
correlated with the explanatory variables (McFadden 
1974; Greene 2002; Wooldridge 2010). Consequently, 
we can predict the probability of accepting SIRFA tech-
nologies as follows:

 ( 1|  ,ν )  ,ν  it it i it iPr Y X X  	 (3)

The function ϕ (.) can be estimated using either a lo-
gistic or a normal distribution, which is defined by the 
distribution function of  εit*, a  probability measure 
that can be  modelled using various statistical distri-
butions. To accurately quantify the parameters of  in-
terest, we concentrated on  the random effect models 
over fixed effects, because the random effect models 
possess the capacity to seamlessly integrate incidental 

parameters and computational complexities, thereby 
rendering them a more effective choice for estimation.

By adopting two distinct methodologies, the suppo-
sition of conditional independence for the forecasted 
variable can be effectively mitigated. Firstly, by averag-
ing out heterogeneity, we could execute a population 
average model that posits responses are independent, 
conditional on  only Xi, effectively mitigating this as-
sumption. Furthermore, when a  distinct relationship 
between unobserved factors and explanatory variables 
is  hypothesised, a  correlated random effects (CRE) 
probit model incorporating the full conditional maxi-
mum likelihood (CML) approach is utilised to accom-
modate the specified association. To mitigate the risk 
of inaccurate coefficient estimates stemming from un-
derestimating standard errors, a  population-averaged 
clustered-robust standard errors approach is employed 
using the generalised estimating equation (GEE) meth-
od. This approach enabled the estimation of  robust 
coefficients by accounting (Neuhaus 1992). Population 
average (PA) estimation addressed issues of  autocor-
relation and heteroscedasticity by  assuming no  inde-
pendence among individual observations. The analysis 
focused on  the alterations in  the average population 
outcome resulting from modifications in the influential 
factors within the distinct grouping of the ith individu-
al’s specificcluster (Hubbard et al. 2010). Furthermore, 
when a distinct relationship between the unobserved 
error and explanatory variables was evident, a  CRE 
model, as originally conceived by Mundlak (1978) was 
utilised to  mitigate the limitation. To  tackle the het-
erogeneity problem, this approach relaxed the rigid 
assumption of  the traditional random effects model, 
which postulated a  zero covariance between the ex-
planatory variables and error terms. Instead, it allowed 
for the possibility of  unobservable factors being cor-
related with specific elements of the individual-specific 
vectors Xi by introducing a more nuanced assumption:

 2
αν  |  ~ ψ ξ, σ  i i iX N X 	 (4)

where: Xi – arithmetic mean of Xit over a given period; 
σ2

α – variance of αi in equation ν ψ ξ αi i iX   .

This model enabled us to  accurately quantify the 
isolated impacts of  the constituent components of Xi 
on the response probability, as they would be experi-
enced at  the average value of  vi (i.e. when vi was set 
to zero). This facilitated a meaningful comparison be-
tween the betas derived from the present model and 
those obtained from the PA model, which effectively 
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quantified the incremental influence of each Xi on the 
probability of response at its average value of vi. Veri-
fying the null hypothesis of normality, which assumes 
that the underlying distribution is unconditionally nor-
mal, involves examining whether the mean (ξ) is equal 
to  zero. Since this hypothesis was rejected across all 
specifications, we  adopted an  alternative approach, 
namely the CML method, to model the adoption deci-
sions (Wooldridge 2010).

Impact assessment. To measure farmers’ adoption 
impact of SIRFA on production costs (PC) and the re-
turn on investment (ROI) indicators, we first specified 
the following panel model:

Yit = β0 + β1SIRFA adoptionit + β2Xit + εit	 (5)

where: Yit – relevant outcomes (PC or ROI) indicator for 
household i at time t; SIRFA adoption – farmers’ adop-
tion status where SIRFA are considered; Xit – matrix 
of explanatory factors; β0 – constant; β1, β2 – parameters 
to be estimated; εit – error term.

In estimating Equation (5), we had to consider that 
as household’s adoption of SIRFA technologies is not 
a  random decision, it  is possibly correlated with the 
error terms. The inherent correlation between this 
variable and the SIRFA adoption process led to endo-
geneity, rendering the latter’s determinants inherently 
intertwined. Hence, to  address the potential endoge-
neity issue of this variable, following previous studies 
(Terza et  al. 2008; Ma and Zhu 2020), we  employed 
a two-stage residual inclusion (2SRI) approach.

The first stage of  the 2SRI approach estimated the 
probability of  adoption of  SIRFA technologies based 
on the following probit model:

SIRFA adoptionit = β0 + β1Xit + β2IVi + εit	 (6)

The likelihood that a  farmer i adopts SIRFA tech-
nologies, denoted by Yit, was influenced by a set of ex-
planatory factors, captured by  the vector Xit, while 
being indirectly affected by  the presence of  an in-
strumental variable (IVi), which serves as a proxy for 
external factors that may shape the farmer’s decision-
making process. The remaining variables are defined 
in Equation (5).

We chose the variable farmers’ information-seek state 
as an instrumental variable (IV) for this study because 
farmers’ information-seeking about SIRFA can influ-
ence adoption decisions but can not directly affect the 
outcomes (Kassem et al. 2021; Luo et al. 2022; Wu 2022).

The second phase of the 2SRI methodology quanti-
fied the transformative effect of SIRFA on PC, specifi-
cally assessing the impact on bottom-line profitability 
and the ROI. Considering the inherent characteristics 
of  the dependent variables, a  linear regression model 
with panel data analysis was employed in  the second 
stage. The Hausman test was utilised to  validate the 
preference between fixed and random effects in  the 
static panel model, yielding a  significant outcome 
at a 1% level, which favours a fixed effects model. Not-
withstanding, we also estimated a random effects mod-
el to investigate the possibility of any significant differ-
ences in the results. Thus, the second stage of 2SRI was 
succinctly encapsulated as:

Yit = β0 + β1SIRFA adoptionit + β2Xit + 
        + β3IVi + 4β ˆ

itR + εit	
(7)

where: Yit – outcome variables (i.e. PC and ROI); ˆ
itR  – 

residual term predicted after estimating Equation (6), 
and is included in Equation (7) to account for unobserved 
heterogeneity that could bias the outcome variables.

The residual term ( )ˆ
itR , obtained after adjusting for 

Equation (6), was a critical component that was incorpo-
rated into Equation (7) to address potential unobserved 
heterogeneity, which may otherwise introduce bias into 
the outcome variables (Ma and Zhu 2020). Other vari-
ables are already defined in the Equations (5) and (6).

We also conducted a  series of  tests to  identify het-
eroscedasticity, autocorrelation, and cross-sectional 
dependence (CD) within our dataset. The highly sig-
nificant results (P  < 0.01) for both heteroscedasticity 
and autocorrelation [Table S1 in the Electronic Supple-
mentary Material (ESM)] underscored the persistence 
of  these issues. Furthermore, the Pesaran and Frees 
test for cross-sectional dependence rejected the null 
hypothesis, indicating notable inter-sectional correla-
tions. Given that the study period spanned merely sev-
en years, testing for data stationarity is not advisable 
(Wooldridge 2012). Consequently, we employed vari-
ous panel-data linear models, including feasible gen-
eralised least squares (XTGLS), linear regression with 
panel-corrected standard errors (XTPCSE), Newey-
West standard errors (NEWEY), Driscoll-Kraay stan-
dard errors (XTSCC), fixed effects linear models with 
a  first-order autoregressive (AR-1) disturbance term 
(XTREGAR), and Prais-Winsten regression (PRAIS) 
to ensure a more objective conclusion (Wu 2008; Popp 
et al. 2011; Kumar et al. 2016; Bai et al. 2021; Hasan and 
Adnan 2023).
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Measurement of key variables. The dependent vari-
able in the determinants analysis was SIRFA adoption, 
represented as one for adopters and zero otherwise. The 
impact analysis employed PC and ROI as outcome met-
rics. To  facilitate estimation, the production cost was 
converted to  logarithmic form. ROI effectively gauges 
investment performance by  assessing the ratio of  net 
profit to total expenses. Table 1 presents additional vari-
ables utilised in this study, derived from an extensive re-
view of existing research (Idrisa et al. 2012; Ndiritu et al. 
2014; Sunny et al. 2022b, 2023; Rizzo et al. 2023).

RESULTS AND DISCUSSION

Descriptive statistics. Table 2 presents a  descrip-
tive study highlighting significant distinctions between 
adopters and non-adopters across various metrics. For 
example, both cohorts exhibited similar production 
costs, with adopters averaging 10.88, slightly lower than 

non-adopters at  10.90. However, standard deviations 
revealed that non-adopters’ costs exhibited less vari-
ability. Adopters demonstrated a markedly higher ROI 
(2.70) in contrast to non-adopters (2.10). Demographi-
cally, both groups were comparable in  age (adopters: 
0.97, non-adopters: 0.92) and education (adopters: 0.88, 
non-adopters: 0.85), with modest standard deviations 
suggesting consistent demographics within each cohort.

Household size reflected minor differences (adop-
ters: 0.47, non-adopters: 0.42), while family labour 
averages were identical (1.15), indicating similar lev-
els of reliance on domestic labour. Non-adopters pos-
sessed marginally more land and ownership, yet both 
groups boasted high land ownership rates (over 90%). 
The median land size remained consistent across both 
cohorts. Adopters exhibited slightly larger farming 
experience (30.60 years) than non-adopters (29.81 
years), with substantial variability in  both instances. 
Furthermore, adopters had a more favourable percep-

Table 1. Description of the variables used in different models

Variables Measurement unit Description
Outcome variables
SIRFA adoption (SA) dummy variable 1 = SIRFA adopters, 0 = otherwise
Production cost (PC) BDT/ha log value of total production cost
Return on investment (ROI) ratio ratio of net earnings to total expenditures
Explanatory variables
Age (AG) dummy variable 1 = farmers age is above 30 years, 0 = otherwise
Education (ED) dummy variable 1 = farmer is literate, 0 = otherwise

Household size (HS) dummy variable 1 = number of family members is > 4, 0 = number of family 
members is ≤ 4

Family labour (FL) number number of active labour in a household
Land size (LS) ha Respondent‘s farm size in hectare
Land ownership (LO) dummy variable 1 = farmer owned, 0 = otherwise
Land typology (LT) dummy variable 1 = mid-highland, 0 = low or mid-low
Farming experience (FE) years number of years actively engaged in farming
Soil fertility perception (SFP) dummy variable 1 = farmer perceives their farmland as fertile, 0 = otherwise
Soil water retention (SWR) dummy variable 1 = farmland can hold water long, 0 = otherwise
Irrigation machine ownership (IMO) dummy variable 1 = farmer owns irrigation machine, 0 = otherwise
SIRFA knowledge (SK) dummy variable 1 = farmers have proper knowledge of SIRFA, 0 = otherwise
Credit availability (CA) dummy variable 1 = availability of credit during cropping season, 0 = otherwise
Secondary income (SI) BDT log value of secondary income
Instrumental variable

Farmer’s information seeking state (FIS) dummy variable 1 = farmers seek information of SIRFA from others, 
0 = otherwise

BDT – the currency for Bangladesh and USD 1 = BDT 110 approximately; 1 ha = 247.13 decimal; SIRFA – solar irrigation 
and recommended fertiliser application
Source: Author’s own elaboration
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tion of soil fertility and water retention (0.39 and 0.79) 
compared to  non-adopters (0.33 and 0.64). Owner-
ship of irrigation machinery was less prevalent among 
adopters (0.38) compared to non-adopters (0.49).

Regarding knowledge, adopters scored higher in SIR-
FA comprehension (0.39) than non-adopters (0.21), 
while credit availability remained similar across both 
groups. Average secondary income was also alike, with 
negligible differences in both mean and variability. No-
tably, adopters exhibited a  significantly greater incli-
nation towards information-seeking behaviour (0.64) 
relative to  non-adopters (0.17), indicating a  stronger 
propensity to pursue agricultural information.

Factors affecting SIRFA adoption. Table 3 shows 
our estimation of  the key factors of  SIRFA adoption 
across three models. We used robust standard errors 
to  mitigate serial correlation across time. Since the 
coefficients simply indicate the direction of  change, 
we assessed average marginal effects (AMEs) to under-
stand better how a unitary change in a covariate affects 
the dependent variable’s conditional mean (Greene 
2002; Wooldridge 2010). Besides, the variance inflation 
factor (VIF) analysis showed that all variable values, 

from 1.05 to 1.85, were below 10, indicating satisfac-
tory multicollinearity (Maddala 1983).

Table 3 illustrates a significant correlation (P < 0.01) 
between age and the adoption of  SIRFA technology, 
with the estimated marginal effect indicating that 
farmers over 30 were 13.4% more inclined to  adopt 
this technology. This finding reinforces prior research 
suggesting that older generations, with their extensive 
experience and understanding of intra-firm structures 
and operations, were more receptive to  sustainable 
agricultural practices. Senior farmers who appreci-
ated indigenous farming methods were more likely 
to engage in sustainable agriculture than their younger 
counterparts (Rizzo et al. 2023). The CRE probit model 
revealed a noteworthy relationship (P < 0.05) between 
household size and technology adoption, with house-
holds comprising more than four individuals exhibit-
ing a  5.8% increase in  SIRFA adoption. This implies 
that larger family units may influence technology up-
take, managerial decisions, and specific needs, poten-
tially facilitating the adoption of  innovative practices 
that enhance economic advantages (Idrisa et al. 2012). 
Moreover, landowners of fertile plots were 3.6% to 3.9% 

Table 2. Descriptive statistics of variables

Variable
Mean value Standard deviation Minimum Maximum

adopter non-adopter adopter non-adopter adopter non-adopter adopter non-adopter
PC 10.88 10.90 0.08 0.11 10.47 10.43 11.10 11.47
ROI 2.70 2.10 1.32 1.17 0.10 0.00 9.80 13.30
AG 0.97 0.92 0.16 0.27 0.00 0.00 1.00 1.00
ED 0.88 0.85 0.33 0.36 0.00 0.00 1.00 1.00
HS 0.47 0.42 0.50 0.49 0.00 0.00 1.00 1.00
FL 1.15 1.15 0.51 0.47 0.00 0.00 3.00 3.00
LS 0.36 0.39 0.35 0.32 0.06 0.05 2.83 2.83
LO 0.96 0.94 0.20 0.24 0.00 0.00 1.00 1.00
LT 0.13 0.23 0.34 0.42 0.00 0.00 1.00 1.00
FE 30.60 29.81 8.85 10.21 9.00 6.00 60.00 63.00
SFP 0.39 0.33 0.49 0.47 0.00 0.00 1.00 1.00
SWR 0.79 0.64 0.41 0.48 0.00 0.00 1.00 1.00
IMO 0.38 0.49 0.49 0.50 0.00 0.00 1.00 1.00
SK 0.39 0.21 0.49 0.41 0.00 0.00 1.00 1.00
CA 0.56 0.58 0.50 0.49 0.00 0.00 1.00 1.00
SI 10.68 10.56 0.43 0.44 8.99 8.70 11.74 12.01
FIS 0.64 0.17 0.48 0.38 0.00 0.00 1.00 1.00

PC – production cost; ROI – return on investment; AG – age; ED – education; HS – household size; FL – family labour; 
LS – land size; LO – land ownership; LT – land typology; FE – farming experience; SFP – soil fertility perception; SWR – 
soil water retention; IMO – irrigation machine ownership; SK – SIRFA knowledge; CA – credit availability; SI – secondary 
income; FIS – farmer’s information seeking state
Source: Authors’ own elaboration
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more likely to accept SIRFA than those with less fertile 
fields, corroborating previous studies linking soil fer-
tility to sustainable intensification techniques (Ndiritu 
et  al. 2014). Further data indicated that farmers cul-

Table 3. Factors affecting SIRFA adoption

Variables
GEE-PA 

logit
GEE-PA 
probit CRE probit

VIF
dy/dx (SE)

Age 0.130
(0.065)**

0.134
(0.063)**

0.132
(0.121) 1.29

Education 0.046
(0.063)

0.059
(0.061)

0.017
(0.042) 1.07

Household size 0.045
(0.041)

0.045
(0.040)

0.058
(0.025)* 1.12

Family labour 0.045
(0.049)

0.044
(0.047)

0.020
(0.028) 1.16

Farm size –0.078
(0.090)

–0.072
(0.091)

–0.039
(0.053) 1.38

Land ownership 0.048
(0.114)

0.040
(0.112)

0.020
(0.078) 1.08

Land typology –0.021
(0.085)

–0.020
(0.084)

–0.016
(0.059) 1.79

Farming experi-
ence

–0.002
(0.003)

–0.002
(0.003)

–0.002
(0.002) 1.41

Soil fertility 
perception

0.039
(0.014)***

0.036
(0.014)**

0.015
(0.009) 1.16

Soil water reten-
tion state

0.141
(0.070)**

0.125
(0.071)*

0.059
(0.047) 1.76

Irrigation ma-
chine ownership

–0.106
(0.048)**

–0.110
(0.047)**

–0.064
(0.033)* 1.13

SIRFA knowl-
edge

0.170
(0.032)***

0.169
(0.033)***

0.138
(0.022)*** 1.11

Credit avail-
ability

–0.019
(0.023)

–0.021
(0.021)

–0.014
(0.014) 1.35

Secondary 
income

0.180
(0.048)***

0.177
(0.049)***

0.102
(0.102)** 1.12

Time dummy 0.051
(0.004)***

0.052
(11.85)***

0.031
(0.005)*** 1.15

Mundlak’s 
devices no no yes –

Observations 2 835 2 835 2 835 –

*, **, *** P-value < 0.10, P-value < 0.05, and P-value < 0.01, 
respectively; z-statistics with robust adjustment are reported 
in parentheses; SIFRA – solar irrigation and recommended 
fertiliser application; GEE – generalised estimated equation 
approach; VIF – variance inflation factor; PA – population 
average; CRE – correlated random effect; mean of time-
varying variables (Mundlak’s devices) was incorporated 
in the model, but not reported in the interest of brevity
Source: Author’s own elaboration

Table 4. Impact of SIRFA adoption on production cost 
using the 2SRI regression model

Variables
First stage Second stage 

FE
Second stage 

RE
dy/dx (SE)

Dependent 
variable

SIFRA 
adoption PC PC

SIRFA adoption – –0.0764***
(0.0048)

–0.0757***
(0.0044)

Age 0.1015
(0.0941)

–0.0046
(0.0065)

–0.0042
(0.0061)

Education 0.0113
(0.0408) – –0.0041

(0.0026)

Household size 0.0186
(0.0250)

–0.0015
(0.0075)

–0.0019
(0.0052)

Family labour 0.0145
(0.0312) – –0.0291***

(0.0025)

Farm size –0.0389
(0.0456)

–1.3319*
(0.6604)

–0.0865***
(0.0044)

Land ownership 0.0262
(0.0602) – 0.0346***

(0.0038)

Land typology –0.0121
(0.0532) – 0.0187***

(0.0031)

Farming 
experience

–0.0011
(0.0018)

0.0238***
(0.0008)

0.0001
(0.0001)

Soil fertility 
perception

0.0392***
(0.0132)

0.0014
(0.0031)

0.0001
(0.0028)

Soil water 
retention state

0.0167
(0.0425) – –0.0284***

(0.0024)

Irrigation machine 
ownership

–0.0519*
(0.0282) – 0.0224***

(0.0025)

SIRFA 
knowledge

0.1172***
(0.0287)

–0.0001
(0.0055)

–0.0017
(0.0046)

Credit 
availability

–0.0296
(0.0213)

0.0064
(0.0049)

0.0023
(0.0039)

Secondary income 0.1041***
(0.0264)

–0.0399***
(0.0093)

–0.0220***
(0.0065)

Time dummy 0.0252***
(0.0043) – 0.0229***

(0.0007)

IV (seek 
information)

0.2217**
(0.0216) – –

Residual – 0.0015***
(0.0005)

0.0016***
(0.0004)

Observations 2 835 2 835 2 835

**, *** 5% and 1% significance level, respectively; FE – fixed 
effects model; RE – random effect model; SIRFA – solar 
irrigation and recommended fertiliser application; PC – 
production cost
Source: Author’s own elaboration
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tivating on  particularly water-retentive soil exhibit 
a 12.5% to 14.1% increase in SIRFA adoption. Preserv-
ing soil health necessitated water retention to  foster 
crop growth and maintain organic richness, supporting 
earlier findings that the capacity of soil to retain water 
promotes sustainable agriculture (Sunny et al. 2022c). 
The result also demonstrated a  significant negative 
relationship (P  < 0.05) between ownership of  irriga-
tion devices and SIRFA adoption, suggesting that pos-

sessing any irrigation system decreased the likelihood 
of adoption by 6.4–11%. Besides, farmers with higher 
secondary incomes were 1.85% to  6.25% more likely 
to embrace new technologies compared to their peers, 
supporting earlier studies indicating that increased 
off-farm income positively impacts the adoption of in-
novative practices, considering additional costs (Sunny 
et  al. 2022b). Lastly, the data revealed that farmers 
knowledgeable about SIRFA technologies were 13.8% 

Table 5. Impact of SIRFA adoption on production cost using the different regression models

Variables
xtgls xtscc xtpcse xtregar newey prais

dy/dx (SE)

SIRFA adoption –0.0700***
(0.0025)

–0.0711***
(0.0091)

–0.0738***
(0.0040)

–0.0806***
(0.0041)

–0.0544***
(0.0035)

–0.0830***
(0.0035)

Age –0.0038
(0.0043)

0.0010
(0.0019)

0.0010
(0.0065)

–0.0022
(0.0074)

0.0017
(0.0072)

–0.0010
(0.0074)

Education –0.0026
(0.0040) – –0.0054

(0.0063) – –0.0066
(0.0042)

–0.0113
(0.0160)

Household size 0.0052*
(0.0028)

0.0009
(0.0048)

0.0018
(0.0043)

0.0131*
(0.0074)

–0.0004
(0.0034)

0.0054
(0.0059)

Family labour –0.0287***
 (0.0030) – –0.0301***

(0.0053) – –0.0316***
(0.0037)

–0.0208*
(0.0117)

Farm size –0.0831***
(0.0067)

–1.3868***
 (0.1749)

–0.0908***
(0.0095)

–2.2410***
(0.4963)

–0.0782***
(0.0074)

0.0022
(0.0176)

Land ownership 0.0356***
(0.0073) – 0.0384***

(0.0091) – 0.0368***
(0.0062)

0.0155
(0.0247)

Land typology 0.0215***
(0.0053) – 0.0247***

(0.0079) – 0.0223***
(0.0056)

–0.0164
(0.0180)

Farming experience 0.0000
(0.0002)

0.4493***
(0.0052)

–0.0001
(0.0003)

0.0275***
(0.0009)

0.0001
(0.0002)

0.0008
(0.0006)

Soil fertility perception –0.0024
(0.0016)

0.0031*
(0.0015)

–0.0023
(0.0025)

0.0008
(0.0021)

–0.0141***
(0.0037)

0.0006
(0.0020)

Soil water retention state –0.0294***
(0.0043) – –0.0251***

(0.0059) – –0.0259***
(0.0046)

–0.0111
(0.0151)

Irrigation machine ownership 0.0101***
(0.0034) – 0.0217***

(0.0051)  – 0.0207***
(0.0037)

–0.0350***
(0.0113)

SIRFA knowledge –0.0039
(0.0025)

0.0065
(0.0087)

–0.0011
(0.0037)

0.0023
(0.0049)

0.0032
(0.0034)

–0.0050
(0.0037)

Credit availability –0.0025
(0.0021)

0.0056***
(0.0005)

–0.0067**
(0.0033)

0.0030
(0.0029)

–0.0243***
(0.0040)

0.0031
(0.0027)

Secondary income 0.0074**
(0.0032)

–0.0340**
(0.0135)

0.0047
(0.0047)

–0.0131**
(0.0064)

0.0172***
(0.0043)

–0.0168***
(0.0055)

Time dummy 0.0221***
(0.0006)

–0.4238***
(0.0043)

0.0209***
(0.0008) – 0.0225***

(0.0009)
0.0218***

(0.0033)
Observations 2 835 2 835 2 835 2 835 2 835 2 835

**, *** 5% and 1% significance level, respectively; SIRFA – solar irrigation and recommended fertiliser application;  xtgls – panel-
data linear models by using feasible generalized least squares; xtscc – regression with Driscoll-Kraay standard errors; 
xtpcse – linear regression with panel-corrected standard errors; xtregar – fixed- and random-effects linear models with an AR(1) 
disturbance; newey – regression with Newey–West standard errors; prais – Prais-Winsten and Cochrane-Orcutt regression
Source: Author’s own elaboration
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to 17% more likely to utilise them, further supporting 
previous research that underscores the role of knowl-
edge in shaping perceptions, intentions, and environ-
mentally responsible behaviours (Liu et al. 2020).

Effect of  SIRFA adoption on  production cost. 
The estimates from the 2SRI method are presented 
in  Table  4. Due to  the complexities of  coefficient in-
terpretation, we provide marginal effects instead. The 
first-stage results revealed that farmers’ cognitive 
skills, supplementary income, soil fertility, and water 
retention capacity enhanced the adoption of  SIRFA. 
The instrumental variable demonstrated a  positive 
and statistically significant association, indicating that 
farmers exhibiting greater curiosity regarding SIRFA 
were more inclined to embrace the technology.

The empirical analysis in columns 3 and 4 of Table 4 
reveals compelling evidence of SIRFA adoption’s signifi-
cant impact on production costs in agriculture. Notably, 
SIRFA adoption was associated with a 7.57% to 7.64% 
reduction in  production costs, underscoring its po-

tential as a cost-effective sustainable farming practice. 
Interestingly, factors such as  farm size, family labour, 
land ownership, land typology, farming experience, soil 
water retention, irrigation machine ownership and sec-
ondary income also played crucial roles in influencing 
production costs. These findings suggest that promot-
ing SIRFA could lead to  substantial economic ben-
efits for farmers while contributing to  environmental 
sustainability. Prior research indicates that innovative 
farming practices significantly bolster sustainable agri-
cultural methods, enabling participants to considerably 
lower production expenses (Tho et al. 2021).

The comparison of the two principal models (Table 4) 
with alternatives reveals that the results in Table 5 ex-
hibit analogous signs and effects. The adoption of SIR-
FA led to a reduction in production costs ranging from 
5.44% to 8.30%. Similar to earlier results, factors such 
as farm size, family labour, land ownership, land typol-
ogy, farming experience, soil water retention, irrigation 
machine ownership and secondary income also played 

Table 6. Impact of SIRFA adoption on ROI using the 2SRI regression model

Variables
First stage Second stage FE Second stage RE

dy/dx (SE)
Dependent variable SIFRA adoption ROI ROI
SIRFA adoption – 0.2503***(0.0386) 0.2561***(0.0369)
Age 0.1015 (0.0941) 0.0052 (0.0631) –0.0144 (0.0611)
Education 0.0113 (0.0408) – –0.2859*** (0.0243)
Household size 0.0186 (0.0250) –0.1638*** (0.0514) –0.2364*** (0.0437)
Family labour 0.0145 (0.0312) – 0.0234 (0.0183)
Farm size –0.0389 (0.0456) –1.6490 (5.9201) –0.9391*** (0.0387)
Land ownership 0.0262 (0.0602) – 0.4790*** (0.0279)
Land typology –0.0121 (0.0532) – 0.4429*** (0.0253)
Farming experience –0.0011 (0.0018) 0.1488*** (0.0071) 0.0002 (0.0010)
Soil fertility perception 0.0392***(0.0132) –0.0009 (0.0250) –0.0068 (0.0247)
Soil water retention state 0.0167 (0.0425) – 0.0402* (0.0206)
Irrigation machine ownership –0.0519* (0.0282) – –0.4129*** (0.0206)
SIRFA knowledge 0.1172***(0.0287) –0.1254*** (0.0443) –0.1182** (0.0393)
Credit availability –0.0296 (0.0213) –0.0966** (0.0343) –0.1530*** (0.0328)
Secondary income 0.1041***(0.0264) 2.6558*** (0.0965) 2.3467*** (0.0677)
Time dummya 0.0252***(0.0043) – 0.1556***(0.0064)
IV (seek information) 0.2217**(0.0216) – –
Residual – –0.0140*** (0.0043) –0.0114** (0.0040)
Observations 2 835 2 835 2 835

**, *** 5% and 1% significance level, respectively; SIRFA – solar irrigation and recommended fertiliser application; FE – 
fixed effects model; RE – random effect model; ROI – return on investment
Source: Author’s own elaboration
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crucial roles in  influencing production costs. These 
findings corroborate the evidence presented in Table 4.

Effect of  SIRFA adoption on  ROI. Table 6 shows 
that the residual error was statistically significant, dem-
onstrating a strong link between first and second stage 
estimation error terms. The findings suggest that SIRFA 
technologies in  BRRI-dhan29 rice production would 
boost ROI by  25.03% to  25.61%. This finding matches 
a  prior study conducted in  Vietnam that farmers who 

adopted sustainable farming techniques achieved 22% 
higher ROI than their counterparts (Tho et al. 2021). Be-
sides, factors such as secondary income, land ownership, 
land typology, farm size, irrigation machine ownership, 
education, Soil water retention state, farming experience, 
knowledge credit availability and household size influ-
ences ROI. These results highlight the complex interplay 
of  factors affecting farm profitability and suggest areas 
for potential policy intervention or further research.

Table 7. Impact of SIRFA adoption on ROI using the different regression models

Variables
xtgls xtscc xtpcse xtregar newey prais

dy/dx (SE)

SIRFA adoption 0.1392***
(0.0246)

0.2024***
(0.0506)

0.2298***
(0.0418)

0.1627***
(0.0380)

0.2062***
(0.0480)

0.2436***
(0.0344)

Age –0.0354
(0.0414)

–0.0476*
(0.0212)

–0.0433
(0.0646)

–0.0220
(0.0678)

–0.0180
(0.0630)

–0.0138
(0.0678)

Education –0.1120**
(0.0443) – –0.2125**

(0.0733) – –0.1479**
(0.0578)

–0.0906
(0.5957)

Household size –0.3607***
(0.0256)

–0.1871**
(0.0516)

–0.4040*** 
(0.0441)

–0.1849*
(0.0678)

–0.4050***
(0.0385)

–0.0858
(0.0626)

Family labour 0.0311
(0.0308) – 0.0243

(0.0507) – 0.0047
(0.0389)

0.1456
(0.4353)

Farm size –0.7076***
(0.0600)

–1.1684
(2.5804)

–0.7808***
(0.0919)

3.8386
(4.8878)

–0.6273***
(0.0682)

–3.8851***
(0.6443)

Land ownership 0.3893***
(0.0652) – 0.4406***

(0.0881) – 0.4778***
(0.0610)

0.6329
(0.9250)

Land typology 0.2483***
(0.0459) – 0.3597***

(0.0705) – 0.3517***
(0.0506)

0.0519
(0.6737)

Farming experience 0.0010
(0.0015)

–0.9694***
(0.0406)

0.0025
(0.0025)

0.1699***
(0.0068)

0.0032
(0.0021)

–0.0149
(0.0219)

Soil fertility perception –0.0037
(0.0144)

–0.0169
(0.0185)

–0.0146
(0.0269)

–0.0215
(0.0210)

0.0156
(0.0399)

–0.0206
(0.0185)

Soil water retention state 0.0049
(0.0392) – 0.0341

(0.0580) – 0.0213
(0.0420)

0.3164
(0.5628)

Irrigation machine ownership –0.2882***
(0.0295) – –0.3174***

(0.0498)  – –0.2099***
(0.0384)

–0.0412
(0.4209)

SIRFA knowledge –0.1389***
(0.0239)

–0.1845**
(0.0503)

–0.0995**
(0.0372)

–0.0915**
(0.0465)

–0.0981**
(0.0400)

–0.0328
(0.0370)

Credit availability –0.1552***
(0.0193)

–0.0885**
(0.0272)

–0.2147***
(0.0373)

–0.0774**
(0.0284)

–0.4910***
(0.0449)

–0.0705**
(0.0251)

Secondary income 1.6389***
(0.0304)

2.6039***
(0.0303)

1.8014***
(0.0649)

2.7578***
(0.0615)

1.4316***
(0.0574)

2.7626***
(0.0548)

Time dummya 0.1594***
(0.0051)

1.1029***
(0.0307)

0.1662***
(0.0089) – 0.1701***

(0.0096)
1.3092***

(0.1267)
Observations 2 835 2 835 2 835 2 835 2 835 2 835

**, *** 5% and 1% significance level, respectively; SIRFA – solar irrigation and recommended fertiliser application; xtgls – panel-
data linear models by using feasible generalized least squares; xtscc – regression with Driscoll-Kraay standard errors; 
xtpcse – linear regression with panel-corrected standard errors; xtregar – fixed- and random-effects linear models with an AR(1) 
disturbance; newey – regression with Newey–West standard errors; prais – Prais-Winsten and Cochrane-Orcutt regression
Source: Author’s own elaboration
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Table 7 shows that SIRFA adopters had a greater ROI 
than other models. Despite modest differences from 
Table 6, the findings showed similar signs and effects. 
Factors such as  secondary income, land ownership, 
land typology, farm size, irrigation machine owner-
ship, education, farming experience, knowledge, credit 
availability, and household size influenced ROI, sup-
porting the results shown in Table 6.

Our findings emphasise the broader significance and 
potential advantages of  sustainable agricultural prac-
tices, particularly within the realm of  BRRI-dhan29 
rice cultivation. For example, while Sunny et al. (2022b) 
observed a modest 1.36% reduction in PC and an 8.92% 
increase in  ROI following the short-term effects 
of  technology adoption, this manuscript uncovered 
considerably more substantial and enduring impacts 
over time. Specifically, it demonstrated that the adop-
tion of SIRFA led to a  reduction in PC ranging from 
5.44% to  8.30%, and an  increase in  ROI in  between 
13.92% to  25.61%. This indicates that the implemen-
tation of  SIRFA confers more pronounced long-term 
benefits compared to transient advantages.

CONCLUSION

This study, leveraging seven years of  panel data, 
examined the determinants of  SIFRA technology 
adoption and its impact on rice farmers in  the Dina-
jpur region, where acidic soil predominates. Findings 
revealed that factors such as  the respondent’s age, 
household size, soil fertility, water retention capacity, 
ownership of  irrigation equipment, and environmen-
tal considerations substantially influenced adoption 
choices. The impact analysis shows that SIFRA adop-
tion reduced PC by  5.44% to  8.30% while enhancing 
ROI by  13.92% to  25.61%. These results underscore 
the significance of  integrating advanced technolo-
gies to  elevate productivity and improve economic 
outcomes in  agriculture. They also highlight SIFRA’s 
critical role in strengthening farming resilience against 
potential disasters, whether natural or anthropogenic, 
supported by  effective capacity-building frameworks 
within established systems. Additionally, farmers who 
recognised the significance of  resource management 
were more inclined to adopt eco-friendly methods. It is 
plausible that as farmers enhance productivity through 
innovations like SIFRA, policymakers may be increas-
ingly motivated to  support environmentally sustain-
able policies. However, transitioning from existing 
technologies may take time unless farmers see the new 
solutions as  offering superior utility and long-term 

benefits. Therefore, policy implications are derived 
from the key findings of this study.

Firstly, our results indicate that younger farmers cul-
tivating the BRRI-dhan29 rice variety are less likely 
to adopt SIFRA. Consequently, a uniform extension ap-
proach may not be the most effective strategy. Tailoring 
extension strategies to address the diverse characteris-
tics, adoption statuses, and specific challenges of differ-
ent farmer groups is  likely to meet their needs better. 
Further research is necessary to explore how such tar-
geted designs can enhance SIFRA adoption rates.

Secondly, policymakers should rethink the imple-
mentation of conflicting schemes within the same re-
gions, such as permitting both small portable solar ir-
rigation systems and large immovable systems. These 
discrepancies could lead to disputes between farmers 
and service providers, complicating business opera-
tions and loan repayments. Additionally, strategies 
for providing backup in low sunlight conditions must 
be  developed, which could involve connecting solar 
sites to the national electricity grid. This would allow 
for the transfer of unused energy during optimal condi-
tions, providing irrigation support when needed. Fur-
thermore, educating farmers about abiotic and biotic 
factors and adjusting fertiliser application according 
to soil acidity could improve the adoption process.

Given that rural families often involve multiple mem-
bers in decision-making, a higher likelihood of adop-
tion relies on  these individuals possessing adequate 
knowledge of  the benefits. Therefore, disseminating 
information through extension officers, service provid-
ers, and fertiliser distributors is expected to  facilitate 
SIFRA adoption.

Moreover, launching public-private initiatives to es-
tablish group-farming models supported by  microfi-
nance institutions could significantly enhance the adop-
tion process. Group farming encourages small farmers 
to pool resources, creating larger enterprises while shar-
ing costs and benefits, all without relinquishing rights 
to their land. Reforming agricultural cooperatives and 
encouraging family farms to join could serve as a plat-
form for regular exchanges among farmers. Through 
technical guidance and knowledge sharing, SIFRA 
technologies can be promoted more effectively among 
geographically proximate family farms. Additionally, 
establishing region-specific water extraction regula-
tions can mitigate unforeseen groundwater abstrac-
tion issues. Encouraging farmers to conduct soil tests 
annually and establishing more affordable soil-testing 
laboratories will empower them to manage their soil ef-
fectively, tailoring fertiliser application accordingly.
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It is essential to note that the findings of this study 
may not be universally applicable to all SIFRA adop-
ters in  different regions of  Bangladesh due to  their 
diverse characteristics. However, as  the first longitu-
dinal study focused on  technology adoption among 
BRRI-dhan29 rice variety farmers in acidic soils within 
a water-scarce area, it accentuates the need for further 
research across various regions. Investigating this rice 
variety in different contexts will yield valuable insights 
into overcoming inefficiencies and formulating appro-
priate policies to promote sustainable agriculture. Fur-
thermore, we advocate for additional research to elu-
cidate the precise mechanisms through which SIFRA 
technologies impact ROI in rice production. Assessing 
the influence of SIFRA adoption on farmers’ technical 
efficiency is essential. A deeper understanding of these 
mechanisms can inform targeted interventions and 
strategies aimed at fostering sustainable farming prac-
tices and improving farmers’ livelihoods.
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