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Abstract: Advancing agricultural carbon emission efficiency and farmers’ income simultaneously is  crucial for the 
sustainable progress of agriculture. Our study centered on 31 provinces and cities in China and investigated regional 
variances and the dynamic evolution aspects of coordinated development in farmers’ income and agricultural carbon 
emission efficiency, utilising panel data from 2005 to 2021. The analysis revealed the following trends: Firstly, China’s 
overall agricultural carbon emission efficiency was steadily increasing, mainly because of technological advancements. 
Secondly, the correlation between farmers’ income and agricultural carbon emission efficiency in China had notably 
improved from 0.318 to 0.775. Throughout the observation period, disparities in the levels of coordinated development 
were observed in various provinces with a diminishing fluctuation, indicating regional disparities as the primary insti-
gator. Thirdly, the level of coordinated development highlighted positive clustering attributes, demonstrating an ‘east 
high, west low’ pattern; the evolution of coordinated development levels exhibited stability in maintaining the current 
status. This study holds significant value for developing countries in enhancing farmers’ income and agricultural carbon 
emission efficiency in a coordinated manner.

Keywords: agricultural carbon emission efficiency; farmers’ income; coupling coordination degree; Super-Efficiency 
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Climate change is a pressing global challenge in the 
21st century. The increase in atmospheric greenhouse 
gas emissions has resulted in  a  1.1 °C rise in  global 
surface temperature during 2011–2020 compared 
to the period of 1850–1900 (IPCC 2023). These rising 
temperatures have caused serious problems that pose 
a threat to the human survival (Brown et al. 2007; Auff-
hammer 2018; Brown et  al. 2023). Research revealed 
that carbon dioxide accounts for approximately 80% 

of  the total emissions (Lashof and Ahuja 1990), and 
human activities are the primary cause of CO2 emis-
sions (Lamb et al. 2021). Particularly, global agricultur-
al production and land use changes account for about 
24% of  total carbon emission. Therefore, agricultural 
carbon reduction (Norse 2012), reducing agricultur-
al carbon emissions (ACE) and further increasing agri-
cultural carbon emission efficiency (ACEE) are crucial 
for addressing climate change.
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China is  a  top emitting country in  agricultural 
greenhouse gas (Huang et al. 2019). Limited per cap-
ita arable land and unstable land rights have encour-
aged people to  invest in  agricultural inputs to  pur-
sue agricultural income growth (Zhang et  al. 2004; 
Hu et  al. 2020), which further led to  a  significant 
amount of  carbon emissions. In  2022, China’s agri-
culture emitted 828 million tonnes of carbon dioxide 
equivalent. To reduce agricultural carbon emissions, 
China is supporting sustainable agricultural practic-
es, including climate adaptive agriculture (Feng et al. 
2023), facility agriculture (Liu and Xin 2023) and 
fertigation technology (Zheng et al. 2023). In theory, 
enhancing agricultural carbon emission efficiency 
entails decreasing conventional material inputs like 
fertilizers and promoting the adoption of innovative 
resources such as energy-efficient agricultural tools. 
While this could potentially result in  reduced grain 
production and diminished farm incomes, the utili-
zation of energy-saving materials signifies enhanced 
production efficiency, decreased labour input, and 
offers non-agricultural employment opportunities 
for farmers to  augment their income. Therefore, 
studying the coordinated development of farmers’ in-
come (FI) and agricultural carbon emission efficiency 
in China can provide valuable insights into the intri-
cate relationship between environmental quality and 
rural development, as well as offer guidance for other 
developing countries.

A multitude of studies on agricultural carbon emis-
sions provided a solid basis for further investigation 
(Vleeshouwers and Verhagen 2010). Initially, research 
primarily focused on the the present state of agricul-
tural carbon emissions and their influential factors. 
Various studies later opted for emission factor analy-
sis, modeling simulations, and field measurements 
for evaluation. The prominent focus of emission fac-
tor analysis is  the consideration of  carbon sources 
and emission coefficients in agricultural production 
due to  its extensive applicability and wide-ranging 
significance. As  an illustration, Huang et  al. (2019) 
examined agricultural carbon emissions in  China 
spanning from 1997 to  2016. Exploiting this, some 
scholars utilize models such as the LMDI (logarith-
mic mean Divisia index) model, STIRPAT (stochastic 
impacts by regression on population, affluence, and 
technology) model, and the Kaya Identity to  probe 
into the determinants of  agricultural carbon emis-
sions. For instance, Tian et al. (2014) deduced from 
the LMDI model that the impacts of  efficiency, la-
bour, and structure on agricultural carbon emissions 

were gradually waning, whereas the economic influ-
ence was mounting.

Further research on  agricultural carbon emission 
efficiency based on  agricultural carbon emissions 
is needed. The concept of carbon emission efficiency 
stems from ecological efficiency (Schaltegger and 
Sturm 1990). When applied in the agricultural sector, 
it integrates economic and ecological aspects into ag-
ricultural production, aiming to maximise expected 
outputs while minimising unexpected outputs. Cur-
rent assessments of agricultural carbon emission ef-
ficiency mainly rely on  Stochastic Frontier Analysis 
and Data Envelopment Analysis (DEA). Among these 
methods, the non-radial and non-angular DEA-SBM 
(Slacks-Based Measure) model, an extension of DEA, 
addresses biases from traditional models by  includ-
ing slack variables, which leads to  more accurate 
and scientifically sound measurements (Tone 2001). 
Scholars have also conducted assessments of  agri-
cultural carbon emission efficiency across different 
countries and regions (Wu et  al. 2021; Zhang et  al. 
2022). Alongside evaluating agricultural carbon 
emission efficiency, some researchers have examined 
the spatiotemporal distribution of this efficiency. For 
instance, a  study by  Liu and Yang (2021) indicated 
a 1.5% increase in China’s agricultural carbon emis-
sion efficiency from 2009 to 2019. Although China’s 
agricultural carbon emission efficiency displays spa-
tial agglomeration effects, this effect appears to  be 
diminishing.

Numerous scholars delve into the relationship be-
tween agricultural carbon emissions and agricultural 
economic growth. Some researchers substantiate 
the Environmental Kuznets hypothesis (Zhang et al. 
2019; Liu et al. 2021). Certain scholars explored the 
decoupling dynamics between agricultural carbon 
emissions and agricultural economic growth (Han 
et  al. 2018). Some researchers correlate agricultural 
carbon emissions with agricultural modernization, 
technology, and emphasize that efforts to curtail ag-
ricultural carbon emissions will directly or indirectly 
influence agricultural productivity and rural liveli-
hoods. For instance, Zhou et al. (2023) identified that 
Internet utilisation boosted rural household income 
and fostered the adoption of  carbon-efficient farm-
ing practices and low-carbon fertilization technolo-
gies to enhance crop carbon emission efficiency. Xia 
et  al. (2022) scrutinised the coordinated coupling 
of  agricultural carbon emissions and agricultural 
modernization in China from 2010 to 2020, revealing 
a  consistent enhancement in  coordination between 
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agricultural carbon emissions and agricultural mod-
ernisation over the years.

The interaction between ACEE and agricultural 
economic growth are highlighted in  the previous 
analysis. It is imperative to clarify the coupling coor-
dination mechanism between these systems to drive 
the synergistic progress of agricultural carbon emis-
sion efficiency and agricultural economic growth. 
Subsequently, we utilised panel data from 31 provinc-
es and cities in China spanning 2005 to 2021. The Su-
per-Efficiency SBM model with unexpected outputs 
was applied to calculate agricultural carbon emission 
efficiency. Through a  coupling coordination model, 
an  assessment was conducted on  the synchronized 
development level between farmers’ income and agri-
cultural carbon emission efficiency. The examination 
involved a  comprehensive utilisation of  the Dagum 
Gini coefficient, Moran’s index and the Markov chain 
model to explore regional discrepancies and dynamic 
evolution characteristics of the coordinated develop-
ment between farmers’ income and agricultural car-
bon emission efficiency. This study enhances existing 
research by  supplementing the analysis of  efficiency 
loss factors related to  agricultural carbon emission 
efficiency. Furthermore, it  encompasses a  thorough 
assessment of  the coupling coordination between 
farmers’ income and agricultural carbon emission 
efficiency in  China using the coupling coordination 
model. This aids in  comprehending the association 
between agricultural economy and environmental co-
ordinated development, enriching the relevant body 
of  research. Spatial variances and origins of  coordi-
nated development levels between farmers’ income 
and agricultural carbon emission efficiency in China 
were examined through the Dagum Gini coefficient 
and decomposition analysis. Additionally, kernel 
density estimation and Markov chain analysis were 
utilised to investigate the dynamic evolution charac-
teristics of  coordinated development levels between 
farmers’ income and agricultural carbon emission ef-
ficiency in China, aiming to provide insights into re-
gional coordinated development and sustainable agri-
cultural practices.

MATERIAL AND METHODS

Methodology
Undesirable slacks-based measurement. Consid-

ering the unexpected outputs in  the production pro-
cess, the Super-Efficiency SBM model with unexpected 
outputs is  more representative of  real scenarios and 

is  commonly utilised in  studies focusing on  carbon 
emission efficiency (Zhou et  al. 2019), ecological ef-
ficiency (Du et al. 2021), and energy efficiency (Cong 
et al. 2021). In many efficiency assessment studies, it is 
common for multiple decision units to exhibit a 100% 
‘efficiency status’, highlighting the importance of  dis-
cerning these efficient decision units for efficacy rank-
ing. To ensure a more accurate efficiency assessment, 
this research, in  alignment with the work of  Tone 
(2002), adopted the Super-Efficiency SBM model with 
unexpected outputs to  compute agricultural carbon 
emission efficiency.

Assuming there are n decision-making units, each 
unit having m inputs, s1 types of  expected outputs 
and s2 types of  unexpected outputs. The slack vari-
ables for inputs, expected outputs, and unexpected 
outputs are respectively represented by Sx

i, S
y
k, S

z
l. The 

weight vector is denoted by wj, and the objective func-
tion is represented by ρ. xio, yko, zlo are indicative of the 
inputs, expected outputs, and unexpected outputs 
of decision unit o, where o ranges from 1 to n. This 
study selected input indicators based on the four fun-
damental elements of  agricultural production: capi-
tal, labour, land, and technology. Capital input aided 
agricultural producers in adopting eco-friendly tech-
nologies and equipment to curb carbon emissions and 
enhance production efficiency, measured through the 
total agricultural fixed asset investment. Agricultural 
labour represented human capital input, with agricul-
tural employees serving as the metric. Land, as a fun-
damental component for agricultural progress, was 
quantified by  crop sowing areas, drawing from pre-
vious studies (Song et al. 2021). Technological input 
was evaluated by total power of agricultural machin-
ery, reflecting the level of  agricultural moderniza-
tion in  the region. Given the significant role of  ag-
ricultural resources in  production and the principle 
of prioritizing critical areas, fertilisers, pesticides, and 
agricultural films were specifically examined. This 
study balanced economic and ecological outcomes, 
hence utilising agricultural total output value and ag-
ricultural carbon sink as  measures of  expected out-
puts. Agricultural carbon emission efficiency acted 
as a comprehensive yardstick incorporating economic 
growth, resource utilisation, ecological outputs, and 
greenhouse gas emissions. Furthermore, along with 
economic and ecological output variables, consid-
eration was given to  unexpected outputs, primarily 
focusing on agricultural carbon emissions in this re-
search. Based on  the above analysis, the model was 
constructed as follows:
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The utilization of efficiency values derived from the 
inefficient SBM model, accounting for unexpected 
outputs, provided a  static description. To  compre-
hensively assess the changes in  the dynamic effi-
ciency of agricultural carbon emissions between two 
consecutive years, a dynamic analysis was necessary. 
Referring to Paster’s study (Paster and Lovell 2005), 
we computed and decomposed the Malmquist index 
of  the Global Malmquist-Luenberger (GML) global 
frontier.

GMLG
C = MECC × MBPCC	 (3)
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where: GLM – Globe Malmquist Luenberger index; 
MEC – Efficiency Change Index; MBPC – Best Practice 
Change Index.

Within the framework of  efficiency measurement 
on a common frontier, D represents the derived efficien-
cy values based on the dataset. Specifically, xt, yt, zt and 
xt + 1, yt + 1, zt + 1 respectively indicated the input, expected 
output and unexpected output values of decision units 

during the time periods t and t + 1. Furthermore, GMLG
C 

signified the variation in  agricultural carbon emission 
efficiency, where GMLG

C > 1 indicates an improvement 
in this efficiency, whereas GMLG

C < 1 implies a decline. 
Additionally, MECC captures the change in technical ef-
ficiency, revealing the impact of fixed inputs on output, 
while MBPCC represents the alteration in technical pro-
gress, where the output effect of decision units is shaped 
by technological advancements.

Coupling coordination degree (CCD) model. The 
CCD model serves as  a  model utilized for measur-
ing the interdependent development relationship and 
degree of  coordination development of  two or  more 
subsystems. In  this study, the aim was to  scientifi-
cally measure the level of coordination between agri-
cultural carbon emission efficiency (U1) and farmers’ 
income (U2) throughout the developmental process. 
To  accomplish this, a  coupling coordination model 
was constructed. The fundamental formula is present-
ed as follows:

1 2

1 2
2

U U
C

U U
×

=
+

	 (6)

T = αU1 + βU2	 (7)

D C T= × 	 (8)

where: C – the degree of coupling; T – overall coordina-
tion degree; α, β – undetermined coefficients, which are 
set to 0.5.

In order to give the degree of coupling a reference val-
ue, we referred to Liu et al. (2020) and divided the cou-
pling coordination into 10 levels, as shown in Table 1.

Table 1. Grading of coordination degree

Level Coupling coordination degree
Extreme disorder [0.0, 0.1)
Severe disorder [0.1, 0.2)
Moderate disorder [0.2, 0.3)
Mild disorder [0.3, 0.4)
On the verge of disorder [0.4, 0.5)
Barely coordinated [0.5, 0.6)
Primary coordination [0.6, 0.7)
Intermediate coordination [0.7, 0.8)
Good coordination [0.8, 0.9)
High quality coordination [0.9, 1.0]

Source: Authors' own processing

https://www.agriculturejournals.cz/web/agricecon/


325

Agricultural Economics – Czech, 70, 2024 (7): 321–333	 Original Paper

https://doi.org/10.17221/438/2023-AGRICECON

Data
Data utilised in  this study mainly originated from 

the China Statistical Yearbook (2005–2021), statisti-
cal yearbooks of various provinces and cities, statistical 
bulletins of  various provinces and cities. Descriptive 
statistics for each variable are shown in Table 2.

RESULTS AND DISCUSSION

The overall level of ACEE
The Global Malmquist-Luenberger (GML) index ex-

hibited features like comparability across different time 
periods and transitivity. Therefore, the annual GML 
index provided a  dynamic reflection of  the overall 
growth level of agricultural carbon emission efficiency 
up to that year. Since the first period was represented 
by 2005, Figure 1 commences reporting from 2006.

The fluctuations in  the index depicted in  Figure  1 
highlight a  varying trend in  the agriculture carbon 
emission efficiency change rate. As shown in Figure 1, 
this paper divided the study period into 2006–2013 and 
2014–2021, mainly because 2014 was an  important 
turning point in China’s agricultural development and 
was regarded as the first year of China’s comprehensive 

deepening reform. The mean GML index for the period 
between 2006 and 2013 was approximately 1.013, while 
for 2014 to 2021, it measured around 1.048; both num-
bers surpass 1. Additionally, the comprehensive aver-
age GML index from 2014 to 2021 exceeded that of the 
earlier years, signalling an uplift in China’s overall ag-
ricultural carbon emission efficiency and indicating 
a positive developmental state. In detail, the GML in-
dex exhibited an increasing pattern from 2006 to 2008, 
followed by  a  significant downturn in  2009, reaching 
a  nadir. This decline could potentially be  attributed 
to the elimination of agricultural taxes in 2006, thereby 
markedly stimulating agricultural output and enhanc-
ing agricultural carbon emission efficiency. Nonethe-
less, post the worldwide financial crisis in 2008, fluc-
tuations in  the global food market and the volatility 
in costs of fertilizers, pesticides, and other agricultural 
inputs impacted agricultural resource and energy in-
vestments by farmers, leading to a decline in agricul-
tural carbon emission efficiency (Brown et  al. 2014). 
To mitigate the effects of the grain market, the govern-
ment implemented a series of measures to incentivise 
farmers to engage in cultivation, consequently boosting 
agricultural carbon emission efficiency in 2010. After 

Table 2. Descriptive statistics results of the variables

Target level Normative layer Variable Mean SD Min Max
Farmers’ income farmers’ income farmers’ income (EUR) 1 191.0181 743.5032 218.8872 4 492.2099

Agricultural carbon 
efficiency

input element total agricultural fixed as-
set investment (billions) 544.0365 678.6618 1.6000 4 465.7160

input element agricultural employees 
(10 000 people) 830.7636 627.3105 25.0000 3 138.8300

input element crop sowing areas 
(1 000 ha) 5 246.6540 3 762.3480 88.6000 15 065.0300

input element
total power of agricul-

tural machinery (million 
kilowatts)

3 068.4340 2 822.8990 93.9700 13 353.0200

input element fertilizer (10 000 tons) 178.0357 142.6986 4.2000 716.1000
input element pesticide (10 000 tons) 5.2348 4.2335 0.0485 17.3461

input element agricultural film 
(10 000 tons) 7.3836 6.5612 0.0441 34.3524

expected outputs agricultural total output 
value (108 EUR) 196.2680 156.5157 5.6023 703.0904

expected outputs agricultural carbon sink 
(10 000 tons) 2 287.9170 1 956.8720 37.3315 8 174.0440

unexpected outputs agricultural carbon emis-
sions (10 000 tons) 925.7670 639.8953 18.7524 2 455.5230

Source: Authors' own processing
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2010, with the exception of 2014, the GML index con-
sistently exceeded 1, achieving its peak in 2019, show-
casing a  positive growth pattern. Through the  prism 
of  the decomposition index, fluctuations in  the GML 
index aligned closely with those of MBPC, emphasis-
ing a  strong link between technological progress and 
effectiveness in ACE. Since 2015, MBPC generally sur-
passed MEC, pointing to  technological advancement 
as the primary driver behind the boost in agricultural 
carbon emission efficiency.

Input redundancy, unexpected output redundancy, 
and insufficient expected output reflected the gaps 
between the current status of related inputs and out-
puts and the expected optimal configuration. The size 
of relaxation variables can indicate redundancies and 
deficiencies in  output for each decision-making unit, 
thus clarifying the areas that require improvement 
to enhance efficiency.

The relaxation variables were divided by  the corre-
sponding input and output values to calculate the re-
dundancy rate and inadequacy rate (Figure 2). Upon 
examination of the national input redundancy and out-
put inadequacy rates, it appears that there were rela-
tively high rates of redundancy in film plastic and la-
bour input. The heightened redundancy in film plastic 
may be a consequence of wasteful practices and envi-

ronmental pollution resulting from excessive depend-
ency on and improper utilisation of film plastic, con-
sequently diminishing its overall yield and efficiency 
benefits. Conversely, the surplus in  labour input may 
arise from the abundant rural labour force in  China, 
impacting resulting labour inputs, thus factoring as the 
secondary factor in the decline of agricultural carbon 
emission efficiency. Sub-regionally, the reasons for the 
loss of  agricultural carbon emission efficiency may 
be different in different regions. In order to deeply un-
derstand and compare the impacts of agricultural pro-
duction methods, climatic conditions, resource utilisa-
tion and other factors on the efficiency of agricultural 
carbon emissions among different regions, this paper 
divided China into three major regions, namely, east-
ern, central and western, for the purpose of research. 
The specific regional divisions are shown in Figure 3. 
Major contributors to  the decline in agricultural car-
bon emission efficiency in the eastern region included 
film, pesticide, and technical inputs. Being economi-
cally advanced, agricultural practices in the eastern re-
gion of China, heavily relied on contemporary technol-
ogies and chemical inputs. The primary factors fuelling 
the decreased efficiency in the western region were la-
bour and film resources. Given the natural restrictions, 
agricultural operations significantly depend on manual 
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Figure 1. GML index and its decomposition components for China from 2006 to 2021

GML – Globe Malmquist Luenberger index; MEC – Efficiency Change Index; MBPC – Best Practice Change Index
Source: Authors' own processing
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labour, resulting in diminished labour productivity and 
energy efficiency due to the relative shortfall in tech-
nological sophistication and automation. The major 
factors contributing to  the decline in  ACEE in  the 
central region included film and land inputs. As a pre-
dominant agricultural hub in China, the central region 
witnessed excessive land development. The absence 
of  effective crop rotation may contribute to  a  reduc-
tion in  soil organic carbon storage, exacerbating the 
deterioration of carbon emission efficiency.

The analysis indicated a  relatively low rate of  inad-
equacy in agricultural economic and ecological output. 

This implies that the deficiencies in these outputs were 
not the primary cause for the loss of  ACEE. Instead, 
the key factors linked to the decline primarily stemmed 
from resource inputs and unexpected outcomes.

Analysis of the coordinated development level
Overall analysis. The average coordination level be-

tween farmers’ income and agricultural carbon emis-
sion efficiency in China from 2005 to 2021 was deter-
mined based on the measurement outcomes from the 
coupling coordination model, shown in Figure 4. As-
sessment of the coupling coordination trend revealed 
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Figure 3. Division of China into eastern, cen-
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Resources of China
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a  fluctuation and enhancement in  levels of coupling 
coordination, ranging from 0.318 to  0.775. Over the 
years, China transitioned from mild disorder between 
2005 and 2007 to  primary and intermediate coordi-
nation grades between 2017  and 2021, respectively. 
Regionally, there has been progressive improvement 
in  coupling coordination levels: ranging from 0.40, 
0.32, 0.24 in  2005 to  0.85, 0.73, 0.74 in  2021 for the 
eastern, central, and western regions, respectively, with 
growth percentages of 112.5%, 125%, and 208.3%. The 
western region exhibited substantial growth, with the 
central region following suit, while the eastern region 
experienced more subdued progress.

The above observations demonstrate a  positive 
trend in the coordinated development of FI and ACEE 
in  China. The western region is  showing promising 
progress, whereas the central and eastern regions need 
to enhance efforts on multiple fronts to  speed up the 
advancement of coordination between the two systems.

Analysis of spatial variation and sources of varia-
tion. Compared with the standard Gini index, the Da-
gum Gini coefficient had good decomposition perfor-
mance, which could take into account the distribution 
status of the sub-sample and the cross overlap between 
the samples, to  achieve the complete identification 
of  the contribution to  the overall regional disparity. 
Therefore, this paper calculated the decomposition re-
sults of the Dagum Gini coefficient for China and vari-

ous regions from 2005 to 2021 based on the research 
of related scholars (Dagum 1997), to further reveal the 
spatial differences in  the level of  synergistic develop-
ment of  farmers’ incomes and agricultural carbon 
emission efficiencies in China and various regions and 
the sources of  the differences. The results are shown 
in Table 3.

There was an overall decreasing trend in  the differ-
ence between FI and ACEE, ranging from 0.180 to 0.055. 
Regionally, the coordinated development levels in  the 
eastern, central, and western regions of China indicated 
a fluctuating downward trend. The Dagum Gini coeffi-
cient decreased most significantly in the western region, 
reaching 0.194, while decreasing by the lowest margin 
in the central region at 0.036. This divergence can be at-
tributed to the western region’s infrastructure enhance-
ments, factor flow improvements, and regional integra-
tion, which helped to  close the gap (Fan et  al. 2011). 
Conversely, limited policy support and technological 
dissemination spaces in the various regions of the cen-
tral area led to slower synchronization in development 
levels among provinces. The Dagum Gini coefficients 
for the eastern, central, and western regions displayed 
a fluctuating downward trend. The ‘east-central’ decline 
was approximately 0.062, corresponding to a decrease 
rate of around 52.99%; the ‘east-west’ decline measured 
about 0.154, with a decrease rate estimated at 74.71%; 
and the ‘central-west’ decrease was around 0.136, with 
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a decrease rate recorded at 74.36%. Results in Table 3 
revealed that during the assessment period, the con-
tribution percentage of  inter-regional  deviations was 
57.870. This implies that inter-regional variations rep-
resent the primary root cause of the development gap.

Characteristics of the spatial evolution of CCD
To further study the spatial evolution pattern 

of  the coordinated development, the Moran’s I index 
of 31 provinces from 2005 to 2021 was calculated. The 
results are shown in Table 4. The values of Moran’s  I 
fluctuated between 0.131 and 0.360, all were signifi-
cant at least at the 10% level, indicating a high degree 
of spatial dependency of coordinated development lev-
els among different provinces in geographic positions, 
and the presence of spatial agglomeration effects.

The previous global spatial auto-correlation analysis 
failed to display the spatial correlation features among 
provinces. Therefore, we  utilised Moran scatter plots 
to perform a local spatial auto-correlation analysis. The 
selected years were 2005, 2010, 2015, and 2021.

Examining Figure 5 reveals that the regression slopes 
of  the Moran scatter plots over the four years were 
consistently positive. This exemplifies a notable spatial 
clustering trend in the integrated progress of farmers’ 

Table 3. Decomposition results of Dagum Gini coefficients for China and its regions

Year China
 Intra-regional Inter-regional Contribution percentage

eastern central western east-central east-west central-west intra-regional inter-regional supervariable 
density

2005 0.180 0.105 0.081 0.239 0.116 0.207 0.183 27.461 63.062 9.478
2006 0.154 0.098 0.107 0.161 0.113 0.165 0.154 26.987 58.144 14.869
2007 0.128 0.088 0.070 0.146 0.095 0.144 0.119 28.191 61.075 10.734
2008 0.121 0.090 0.087 0.116 0.098 0.130 0.113 27.975 58.897 13.128
2009 0.123 0.079 0.071 0.135 0.096 0.135 0.112 27.608 59.361 13.031
2010 0.107 0.053 0.071 0.112 0.077 0.116 0.102 25.081 64.716 10.203
2011 0.112 0.069 0.068 0.117 0.084 0.122 0.105 26.500 61.990 11.510
2012 0.092 0.055 0.073 0.100 0.074 0.095 0.094 28.316 52.178 19.506
2013 0.089 0.050 0.072 0.105 0.068 0.092 0.095 28.985 50.286 20.729
2014 0.089 0.051 0.072 0.107 0.066 0.092 0.097 29.719 49.012 21.269
2015 0.100 0.067 0.078 0.114 0.079 0.105 0.104 29.922 50.853 19.225
2016 0.088 0.047 0.066 0.093 0.069 0.092 0.087 26.713 59.884 13.403
2017 0.090 0.057 0.060 0.079 0.074 0.096 0.076 25.376 64.701 9.923
2018 0.088 0.053 0.062 0.082 0.079 0.090 0.075 25.934 58.845 15.222
2019 0.073 0.037 0.062 0.066 0.067 0.070 0.066 25.122 56.002 18.876
2020 0.059 0.035 0.047 0.056 0.055 0.057 0.055 26.795 53.079 20.127
2021 0.055 0.032 0.045 0.045 0.055 0.052 0.047 24.504 61.697 12.799
Mean 0.103 0.063 0.070 0.110 0.080 0.109 0.099 27.129 57.870 14.943

Source: Authors' own processing

Table 4. Global Moran index of coupling coordination 
degree between agricultural carbon emission efficiency 
and farmer’s income from 2005 to 2021

Year I E(I) SD Z P
2005 0.203 –0.033 0.089 2.647 0.008
2006 0.252 –0.033 0.092 3.116 0.002
2007 0.182 –0.033 0.082 2.633 0.008
2008 0.179 –0.033 0.088 2.410 0.016
2009 0.288 –0.033 0.089 3.626 0.000
2010 0.360 –0.033 0.091 4.324 0.000
2011 0.300 –0.033 0.090 3.718 0.000
2012 0.266 –0.033 0.090 3.314 0.001
2013 0.236 –0.033 0.090 2.981 0.003
2014 0.250 –0.033 0.089 3.174 0.002
2015 0.269 –0.033 0.090 3.374 0.001
2016 0.306 –0.033 0.090 3.784 0.000
2017 0.312 –0.033 0.090 3.833 0.000
2018 0.250 –0.033 0.090 3.137 0.002
2019 0.231 –0.033 0.090 2.937 0.003
2020 0.134 –0.033 0.087 1.913 0.056
2021 0.131 –0.033 0.088 1.853 0.064

I – Moran's index; E – normal distribution expectation of the 
global Moran's index Z – test statistic of the Moran's index
Source: Authors' own processing
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Trend forecast of coordinated development levels
The traditional Markov chain revealed the develop-

ment characteristics of  the synergistic development 
level of farmers’ income and agricultural carbon emis-
sion efficiency at  different levels in  different regions 
by discretising the continuous data into K types, and 
calculating the probability distribution and evolution-
ary trend of each type under the condition that both 
time and state are discrete. To forecast the long-term 
trend of  collaborative development level growth, 
we referenced a relevant study (Quah 1996) and per-
formed additional analysis using the traditional Mark-
ov chain method. Initially, we categorised the collabo-
rative development status space into four groups using 
the quartile grouping technique to define the Markov 
transition matrix of collaborative development levels, 
presented in Table 5.

Table 5’s diagonal elements signify the likelihood 
of maintaining farmers’ income and agricultural car-
bon emission efficiency coordination unchanged, 
while the off-diagonal elements express the prob-
ability of transitioning between different coordination 

Figure 5. Moran scatter plots of the coordinated development levels for the years 2005, 2010, 2015, and 2021

Source: Authors' own processing

income and agricultural carbon emission efficiency, 
demonstrating the pattern where high values aligned 
with other high values and low values aligned with low 
values. The high-high clusters predominantly clustered 
in the eastern region, where provinces rich in agricul-
tural resources and with relatively advanced economies 
facilitated progress in agricultural modernization and 
scalability, setting a  model for neighbouring provinc-
es. On the contrary, several provinces in  the central 
areas, in conjunction with numerous provinces in the 
southwest and northwest, formed areas characterised 
by low values. These localised regions might face chal-
lenges stemming from limited agricultural resources, 
carbon-intensive planting patterns, or economic con-
straints, resulting in a lower level of cooperation pro-
gress. Notably, minimal fluctuations were observed 
between 2005 and 2021, underscoring a spatial cluster-
ing phenomenon reinforcing the concept of ‘the weak 
remaining weak’. Thus, it is imperative to strategise and 
navigate approaches to  enhancing farmers’ income 
and agricultural carbon emission efficiency collabora-
tively on a regional scale.
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levels. All main diagonal values exceeding 50% exhib-
ited a  relatively stable coordination level of  farmers’ 
income and agricultural carbon emission efficiency 
in  China  and the major regions, with limited move-
ment. Moreover, except for the western region, the 
values on the main diagonal for L1 and L4 surpassed 
the values of L2 and L3, indicating a higher likelihood 
of  sustainment, which points towards a  converging 
trend. Analysis of  state transition probabilities re-
vealed that all upward transitions in China surpassed 
22.9%, while downward transitions were under 4.60%, 
demonstrating a  trend towards convergence. When 
farmers’ income and agricultural carbon emission ef-
ficiency coordination was at  level L2, a  leap to  level 
L4 is  possible with a  1.5% probability. The eastern, 
central, and western regions showcased upward con-
vergence trends. In  the eastern region, the lowest 
probability of upward transition for L1 was 21.3%, fol-
lowed by 29.9% and 28.3%, indicating that surpassing 
a  specific threshold propels further progress. Focus-
ing on  the central region, the lowest probability for 
upward transition of  L3 was 23.5%, contrasted with 
26.4% for L1 and 29.4% for L2, highlighting an easier 
progression to a higher level when coordination lev-
els are lower. Conversely, reaching a high development 
level posed challenges due to constraints. Noteworthy 

leapfrogging potential existed in  the central region, 
with a  2.9% probability transitioning from L1 to  L3. 
In the western region, the probability of rising to level 
L1 was highest at 29.4%, suggesting an easier adoption 
of advanced technologies for improving the coordinat-
ed development of  farmers’ income and agricultural 
carbon emission efficiency at lower levels.

CONCLUSION

This research focused on  elucidating the efficiency 
of  agricultural carbon emissions through the utilisa-
tion of  a  coupling coordination model to  assess the 
synchronised advancement of farmers’ income along-
side agricultural carbon emission efficiency in China. 
The thorough evaluation scrutinised the extent of co-
ordinated development across the eastern, central, and 
western regions of  China, investigating regional dis-
parities and emerging trends. The findings collectively 
recommend the following refinements:

Agricultural carbon emission efficiency in  China 
was demonstrably increasing. Meanwhile, the correla-
tion between farmers’ income and agricultural carbon 
emission efficiency in China was progressively on the 
upsurge. Analysis of spatial disparities and their under-
lying factors revealed that differences in  coordinated 
development within and among the eastern, central, 
and western regions tended to  diminish. The inter-
regional variations served as the principal catalyst for 
variations in coordinated developmental outcomes.

The spatial pattern of farmers’ income and agricultur-
al carbon emission efficiency in China displayed signifi-
cant positive spatial clustering in their coordinated de-
velopment levels. Findings from the Local Moran index 
reveal a  spatial correlation of  high-high and low-low 
clustering between provinces, with high-high cluster 
areas primarily situated in the eastern regions, and low-
low cluster areas in the central and western regions.

China’s and the east, central and west regions’ 
CCD  was more stable and less liquid. It  was easier 
for  CCD in  the eastern region to  break through up-
wards when it passed a certain threshold. The central 
region was more likely to  develop to  a  higher level 
when CCD was at  a  lower level, and when the lev-
el of development was higher, it was difficult to cross 
the threshold due to conditions. Western region CCD 
was at a low level when it was easier to use advanced 
technology, etc. to achieve the improvement of CCD. 
While our research holds significant value in advanc-
ing agricultural sustainability, it  includes constraints 
rooted in  objectivity. Limited data availability solely 

Table 5. Traditional Markov chain transition probability 
matrix of coordinated development level

Region t / (t + 1) L1 L2 L3 L4 n

China

L1 0.765 0.235 0.000 0.000 132
L2 0.046 0.710 0.229 0.015 131
L3 0.000 0.023 0.738 0.238 130
L4 0.000 0.000 0.039 0.961 103

Eastern

L1 0.787 0.213 0.000 0.000 47
L2 0.021 0.681 0.298 0.000 47
L3 0.000 0.065 0.652 0.283 46
L4 0.000 0.000 0.056 0.944 36

Central

L1 0.735 0.235 0.029 0.000 34
L2 0.059 0.647 0.294 0.000 34
L3 0.000 0.088 0.676 0.235 34
L4 0.000 0.000 0.000 1.000 26

Western

L1 0.706 0.294 0.000 0.000 51
L2 0.078 0.686 0.235 0.000 51
L3 0.000 0.000 0.760 0.240 50
L4 0.000 0.000 0.025 0.975 40

t – year of t; L – coordinated development level; n – number 
of provinces with a coordinated development level of Li
Source: Authors' own processing
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enabled an examination of the trend and spatial distri-
bution concerning the synchronized progress of farm-
ers’ income and agricultural carbon emission efficiency 
in China from 2005 to 2021. Given the expansive scope 
of agriculture encapsulating both crop cultivation and 
livestock sectors, potential gaps may exist in appraising 
agricultural carbon emission efficiency, limiting the ac-
curacy of the calculations. Future scrutinization should 
aim to  enhance the assessment framework, delving 
deeper to uncover the underlying mechanisms behind 
the coordinated development of  agricultural carbon 
emission efficiency and farmers’ income.
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