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Abstract: Farms are key to  agricultural advancement and carbon emission reduction. Understanding the influence 
of farm size on emissions is vital for eco-friendly farming. Our study used an econometric model with instrumental 
variable adjustments to examine the effect of farm size on greenhouse gas emissions, revealing an inverted U-shaped 
relationship. The findings revealed that emissions increased with farm size until a peak and then decreased. We identi-
fied an optimal farm size range (0.45 km² to 0.58 km²) for lower emissions, where the farm size maintaining the lowest 
greenhouse gas emissions per unit area was 0.58 km², while the lowest greenhouse gas (GHG) emissions per capita 
occured at a farm size of 0.69 km². Reducing emissions intensity per unit area is easier than reducing GHG emissions 
per person. Policymakers should prioritise promoting the expansion to moderately sized farms as a means of achieving 
emission reduction targets rather than solely increasing the number of farms. Overall, these insights offer policymakers 
novel approaches for ecological farm planning and the transition toward a low-carbon agriculture sector.
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To expedite the progression of  ecological farming 
and catalyse the shift toward sustainable, green, and 
low-carbon agricultural practices, scholars worldwide 
have conducted extensive research on greenhouse gas 
(GHG) emissions, contributory factors, and evaluation 
methodologies associated with agricultural endeavours 
(Bekun and Alola 2022; Han et al. 2023). Investigations 
have revealed several determinants of  GHG  emis-

sions with agricultural origins, such as land utilisation, 
management techniques, the prevalent use of pesticides 
and fertilisers, mechanisation in agriculture, combus-
tion of biomass, livestock enteric fermentation, manure 
handling, and soil tilling (Garnier et al. 2019). Further-
more, due to stark differences in regional agricultural 
structures, climatic conditions, levels of management 
practices, and developmental phases, the GHG emis-
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sions from farms exhibit considerable regional dispari-
ties (Adedoyin et al. 2020; Xuan et al. 2023). Regard-
ing the scale of farms, GHG emissions are influenced 
by factors including management strategies, feed sys-
tems, and agricultural policies (Laborde et  al.  2021). 
Mairura et  al. (2023) delved into GHG  emissions 
originating from diverse soil fertility management 
tactics on  maise-cultivating farms, finding the lowest 
GHG emissions with the combined use of fertiliser and 
manure. Research conducted by  Berzina et  al. (2019) 
into the effects of manure management in animal ag-
riculture in Latvia revealed that 73% of  the aggregate 
GHG emissions from animal husbandry stem from the 
digestive processes of  animals, while a  mere 27% are 
attributable to the handling of farm manure.

In examining the impact of farm size on GHG emis-
sions, it is often hypothesised that an increase in farm 
size leads to higher GHG emissions due to a scale ef-
fect. Evidence indicates that the carbon footprint 
of larger farms, those encompassing more than 20 ha, 
is smaller than that of their smaller counterparts, which 
cover less than 0.7 ha (Xu et al. 2022). Other research-
ers have stated that small, cultivated farms increase the 
efficiency of GHG emissions (Omotilewa et al. 2021), 
but discussions on  the topic have been mixed. A  few 
studies examining farm size effects on  GHG emis-
sions have shown that smaller, denser farms emit twice 
as  much GHG as  larger farms (Escribano et  al. 2022; 
Xu et al. 2022). Other studies have revealed the absence 
of any discernible link between the scale of agricultural 
enterprises and the volume of  GHG emissions they 
produce (Alemu et al. 2017), mainly due to the diversity 
of production systems. The above studies investigated 
the influence of farm size on GHG emissions from ma-
nure management and production system perspectives, 
but none of them specified an appropriate size for min-
imising GHG emissions per unit area. Therefore, the 
exploration of farm size’s effect on GHG emissions and 
the determination of an ideal scale remain limited, of-
fering scant insight into national GHG reduction goals 
and the crafting of  adaptive strategies. Furthermore, 
existing regional studies fail to  capture the nation-
wide spatio-temporal trends of  GHG emissions, thus 
obscuring the impact of national emissions policies.

In this context, our study examined the interplay be-
tween farm size and GHG emissions from agricultural 
sources across China from 2000 to  2022. We  aimed 
to  identify an  optimal farm size for minimising 
GHG emissions per unit area, providing critical guid-
ance for fine-tuning China’s future agricultural emis-
sion reduction strategies and policies.

MATERIAL AND METHODS

Econometric model
The STIRPAT model (Ii = ai Pb

i A
c
i T

d
i ei) was formulated 

to unravel the complexity of environmental challenges, 
featuring a constant term ai, a random disturbance term 
ei, and the parameters of the variables P, A, T (denoted 
by b, c, and d, respectively), with i indicating a  single 
unit. By  incorporating panel data and applying loga-
rithmic transformation to  both sides of  the equation, 
we formulated the following linear regression model:

lnIit = lnai + blnPit + clnAit + dlnTit + eit	 (1)

where: I – causes of environmental issues; P – popula-
tion growth; A – affluence; T – unfavourable environ-
mental technology or the impact per unit of economic 
activity; eit – random disturbance term.

Researchers have expanded this base model by  in-
corporating supplementary explanatory variables 
as  surrogates for T, aiming to  explicate the influenc-
es of  factors other than P and A on I. The dependent 
variable I often encompasses a proxy variable for the 
GHG emission index, which is  intertwined with eco-
logical wellbeing. In alignment with the study’s aims, 
we  constructed a  foundational regression model (2) 
to scrutinise farm GHG emissions:

lnGHGit = lnai + βlnsizeit + blnPit + clnAit + 
                 + dlnTit + pi + qt + eit	 (2)

where: GHG – greenhouse gas; size – the core explana-
tory variable of farm size; p – farm individual effect used 
to capture unobserved individual heterogeneity that 
affects greenhouse gas emission q – time effect.

Model (2) was designed to pare down the complex 
interactions among influential factors, thereby pro-
moting individual factor analysis within a decomposi-
tion framework. Within the model, i symbolises farm 
enterprises and t connotes time, while GHG emissions 
are represented by  the variable GHG. Nonetheless, 
it  is essential to recognise the limitations of the IPAT 
(Impact = Population × Affluence × Technology) frame-
work, which lacks the capacity to  extract the effects 
of  solitary factors or  to examine hypotheses related 
to diverse environmental influences. The primary ex-
ploratory variable size is farm size, with β serving as the 
principal parameter. The model also incorporated ef-
fects from individual farm impacts, signified by pi, and 
temporal effects, denoted by qt. Farm area was taken 
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as the primary determinant of farm size, while controls 
such as the per capita GDP of each province’s agricul-
tural areas and other covariates were compacted into  
( itX

→
). Hence, model (2) transforms into:

lnGHGit = α0 + α1lnfarit + ρ itX
→

+ μi + υt + εit	 (3)

where: far – farm area; ρ – the coefficient of control vari-
able X; μ – farm individual effect used to capture unob-
served individual heterogeneity that affects greenhouse gas 
emission; υ – time effect; ε – random disturbance term.

In model (3), we  analysed the effectiveness of  com-
mon methodologies such as least squares and fixed ef-
fects, facilitating the assessment of economic and other 
variables on GHG emission impacts. Given the complex 
dynamics of farm size on greenhouse emissions, includ-
ing management evolution, scientific advancements, 
and policy shifts, emissions may exhibit non-linear tra-
jectories. We introduced a non-linear variant into our 
regression model (3) by embedding a quadratic term for 
farm size:

lnGHGit = β0 + β1lnfarit + β2SlnParit + λ itY
→

+ 
                 + μi + ηt + σit	 (4)

where: λ – coefficient of control variable Y; itY
→

 – control 
variables, including per capita GDP and its quadratic 
terms, as well as other variables; μ – farm individual 
effect used to capture unobserved individual hetero-
geneity that affects greenhouse gas emission; η – time 
effect; σ – random disturbance term.

Model (4) featured Slnfar as  the quadratic term 
of  lnfar, with all other variables remaining consistent 
with model (3). We  introduced categorical variables 
reflecting different farm sizes to address certain mod-
el restrictions, utilising small farms as  the reference 
point. These categories and their associated interac-
tion terms were integrated into model (3), culminating 
in an enriched non-linear model:

4

0 1 ,
1

ln γ γ ln θ ln

μ τ υ

it it k it k it
k

it i t it

GHG far size far

Z


   

   



 	 (5)

where: ϑ – coefficient of the control variable; itZ
→

– con-
trol variable, including per capita GDP and its quadratic 
terms, as well as other variables; μ – farm individual 
effect used to capture unobserved individual hetero-
geneity that affects greenhouse gas emission; τ – time 
effect; υ – a random disturbance term.

In model (5), the terms sizeit,k and lnfarit represented 
the interaction of  the dummy variable with farm size, 
where sizeit,k is the dummy variable considered, and the 
residual component aligns with model (3).

Variables description and data
GHG emissions. To  represent and quantify GHG 

emissions in  China’s agricultural sector, GHG emis-
sion intensity per unit area and per capita were cho-
sen as more effective indicators. The IPCC coefficient 
methodology was used to  calculate GHG emissions. 
Emissions were obtained by  multiplying the activity 
of the source by the corresponding factor [refer to the 
Electronic supplementary material (ESM)]. GHG emis-
sions from four sources (nitrous oxide emissions from 
agricultural land, methane emissions from rice fields, 
methane emissions from animal enteric fermentation, 
and methane emissions from animal manure manage-
ment) were first calculated. GHG emissions per unit 
area and per capita were calculated. A  comparative 
analysis revealed a  similar spatial distribution pat-
tern for both metrics across China. Notably, there was 
a higher emission intensity in the northwestern areas 
juxtaposed against a lower intensity in the economical-
ly prosperous eastern coastal zones (Figure 1). When 
considering the emission intensity per unit area, it was 
observed that regions like Shandong, Henan, Hubei, 
and the municipality of Chongqing have transitioned 
to lower intensity zones, registering emissions beneath 
417.7 Mt CO2-eq in the benchmark year of 2020. Con-
versely, Beijing and Tianjin exhibited a  rise in  their 
emission intensities. In the context o× in the provinces 
constituting the North China Plain, whereas an uptick 
was recorded in the three northeastern provinces and 
Gansu province.

Farm size. At the beginning of the 21st century, farms 
in China were scattered across various provinces, with 
presence in  Heilongjiang, Liaoning, Hebei, Shanxi, 
Hainan, Fujian, et al. This pattern underwent a marked 
transformation by  2020, witnessing a  discernible ex-
pansion in the farm area, aggregated in regions charac-
terised by economic robustness, specifically eastwards 
of the Hu Huanyong Line. Additionally, this agglomer-
ation of agricultural activity extended into northwest-
ern Xinjiang, southern Tibet, and southeastern Inner 
Mongolia. This study identified farm size as a critical 
explanatory variable, bifurcated into two distinct cat-
egories: physical farm area and number of  farm em-
ployees. Through the application of  regression analy-
sis, the influence of farm size on GHG emissions was 
scrutinised. To enhance the robustness of the analysis, 
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the number of farm employees was used as a surrogate 
indicator for farm population size.

Control variables. To  address potential omitted 
variable bias, this study incorporated several factors 
influencing farm-related GHG emissions: the eco-
nomic development level, pesticide and fertiliser use, 
irrigation, technological advancement, management 
quality, and agricultural policy impacts. Economic de-
velopment was gauged by the per capita GDP of each 
agricultural district within provinces, with the square 
of per capita GDP included to test the Environmental 
Kuznets Curve hypothesis. Pesticides derived from 
fossil fuel-based raw materials and nitrogen fertilis-
ers, which release nitrous oxide through soil pro-
cesses, represented significant indirect GHG sources 
in agriculture, while machinery use represented a di-
rect source.

Technological advancement heralds an  upsurge 
in  research and development investment, paving the 
way for a  reduction in GHG emissions. Management 
quality reflects the extent to  which investments are 

made in  intelligent agricultural solutions, including 
advanced farm lighting, pest control systems, and ro-
botic automation. The national highway system served 
as  a  surrogate indicator for transportation services, 
while the introduction of a policy dummy variable, as-
signed a  value of  zero before 2019 and one after, ef-
fectively encapsulated the agricultural policy changes 
aimed at reducing emissions.

China’s development of an extensive national high-
way network centred on  capital cities has facilitated 
agricultural product transport and local socio-eco-
nomic growth (Figure 2A). Pesticide and fertiliser 
trends from 2000 to  2020 displayed similar patterns, 
peaking in  2013–2014 before declining (Figures 2B, 
2C). The  country’s effective irrigated agricultural 
land generally expanded despite a  minor dip in  2013 
and a recent slowdown in growth (Figure 2D). A no-
ticeable drop in the total power of agricultural machin-
ery in 2016 reflects the advancement in mechanisation 
and an upgrade in tractor quality, reducing the number 
of less efficient, smaller tractors.

(A)

0
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Figure 1. Agricultural green house gas (GHG) emission intensity per unit area (A) 2000, (B) 2020 and per capita (C) 2000, 
(D) 2020

Source: Adapted from Zhang et al. (2023)
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Data sources. With an  emphasis on  the reliability 
and uniformity of  the data, this research assembled 
a dataset of Chinese agricultural enterprises spanning 
2000 to 2020, including 6.031 million farms in the anal-
ysis, including 3.8 million family farms, 2.216 million 
legally registered farmer cooperatives, and 15 000 or-
ganised cooperatives. There were 1.765 million grain-
growing family farms and 542  000 grain-growing 
cooperatives. There were 3.217 million family farms 
and 1.942 million cooperatives engaged in  breeding, 
respectively. The dataset incorporated farm size and 
geospatial information gleaned from thorough enter-
prise surveys. The emissions of carbon dioxide, meth-

ane, and nitrous oxide from these enterprises were 
used to calculate GHG emissions using the coefficient 
methodology prescribed by  the Intergovernmental 
Panel on Climate Change. The acquired data encom-
passed variables such as  pesticide and fertiliser us-
age, irrigation methods, technological advancement, 
management efficacy, and agricultural policy reforms, 
all of  which were sourced from the National Bureau 
of Statistics (2000–2020): China Statistical Yearbook, 
Ministry of Agriculture and Rural Affairs (2000–2020): 
China Agricuture Yearbook, National Bureau of Sta-
tistics. (2000–2020): China Rural Statistical Yearbook, 
Ministry of Ecology and Environment (2000–2020): 
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Figure 2. Data description (A) China’s expressway map; (B) pesticide use; (C) fertilizer application; (D) effective irri-
gated area; (E) gross power of agricultural machinery

Source: Data from National Bureau of Statistics (2000–2020): China Statistical Yearbook (China Statistics Press)
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China Environmental Yearbook, miscellaneous region-
al statistical yearbooks, and a diverse array of bulletins. 
Gaps in  the data were filled by  employing pertinent 
econometric methods and drawing from the statistical 
yearbooks of  the corresponding provinces to  ensure 
a comprehensive dataset. The outcomes for each piv-
otal variable are tabulated in Table 1.

Endogeneity discussion. Farm size may interact 
with GHG emissions to a  certain degree. However, 
absolute independence and exogeneity are not always 
assured. This interplay could generate reverse cau-
sality when assessing the impact of  farm size growth 
on GHG emissions, potentially biasing parameter esti-
mates. Therefore, incorporating instrumental variables 
into the econometric model is  essential to  effectively 
address possible endogeneity issues.

To preserve the model’s exogeneity, instrumen-
tal variables that were strongly related to  endoge-
nous  variables were selected. In  our analysis, the ex-
istence of a highway through a farm as of 2020 served 
as the instrumental variable for farm size. This choice 
was informed by two main considerations. First, high-
ways are vital in  boosting commodity flow and eco-

nomic expansion, fostering local population concen-
tration, and aiding in the formation of modern farms, 
thereby demonstrating a strong link with farm size ex-
pansion. Second, highway development and placement 
are influenced by technological, social, and economic 
conditions at  the time. By  treating highway presence 
as  a  natural experiment, we  ensured the exogeneity 
of the instrumental variables and minimised its direct 
effect on current on-farm GHG emissions.

RESULTS

Regression model and analysis
Linear analytical model and analysis. This study 

explored the linear relationship between escalat-
ing farm size and GHG emissions by  utilising a  re-
gression model (2). GHG emissions were quanti-
fied as  GHG  emission intensity (gei) and per capita 
GHG  emissions (pge), acting as  dependent variables. 
Farm size was represented by  explanatory variables 
such as farm area, GDP per capita, and the quadratic 
term of the GDP per capita, all relating to agricultural 
districts within each province. A thorough set of control 

Table 1. Descriptive statistics, 2000–2020

Variable Definition Unit Mean SD Minimum Maximum
gei GHG emissions intensity 10 000 t CO2eq/km2 107.6300 223.0500 20.1100 1 519.2400

pge per capita agricultural GHG 
emissions t CO2eq/people 0.6500 0.0430 0.5300 0.7230

far farm area km2 0.0142 0.0902 0.0002 17.613
pfa population of farm 10 000 people 0.0012 0.0040 0.0000 0.0200
edev economic development level USD 1 369/person 3.4300 2.1020 0.7940 7.1800
pes pesticide 10 000 t 156.6400 19.8700 127.4800 180.7700
fer fertiliser million tonnes 5 258.0700 610.9400 4 146.4100 6 022.6000
irri irrigation km2 607.3400 54.8600 538.2000 691.6100
agm agricultural machinery 10 000 kW 85 658.7000 19 121.2100 52 573.6100 111 728.0700
mle management level % 0.4700 0.1700 0.2600 0.8200
apol agricultural policy 0 or 1 0.5700 0.4800 0.0000 1.0000

rail whether there was a rail passing 
through 0 or 1 0.6700 0.5300 0.0000 1.0000

gei – GHG intensity per ha, encapsulating the emissions produced per km2 of farm area; pge – per capita GHG emission 
intensity, reflecting the emissions attributed to each individual; edev – economic development level of each agricultural 
province, calibrated according to the per capita GDP; a per capita GDP of USD 1 369 is denominated as a value of 1, and 
subsequent values are adjusted in line with the actual GDP; pes – pesticide usage amount, noted in 10 000-tonne units; 
fer – quantity of fertilizers employed, expressed in millions of tons; irri – span of irrigated agricultural land, measured 
in km2; agm – input of agricultural machinery, delineated in kilowatts; mle – diverse management levels across farms, 
a value of 0 indicates an absence of any management strategies; apol – agricultural policy, with its value indicating the 
presence (1) or lack (0) of agricultural policy in the area; rail – existence of railway infrastructure near the farm; the pres-
ence of a railway is marked as 1, while its absence is 0; GHG – greenhouse gas
Source: Adapted from Adedoyin et al. (2020)
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variables was integrated( itX
→

). Reformulating model (2) 
as  lnenergyit  =  α0 + α1lnpsiit + ρ itX

→
+ μi + υt + εit, 

we  adopted model (3) to  carry out ordinary least 
squares (OLS) and fixed effects (EF) estimations for 
GHG emission intensity and per capita GHG emissions 
as separate dependent variables. The choice to use the 
individual fixed effects model in this research was sub-
stantiated by the results from the F-test and the Haus-
man test, both outlined in Table 2.

In Table 2, the second column demonstrates the es-
timated results for farm size (measured by farm area), 
revealing a  positive coefficient that insinuates a  dis-

cernible intensification of  GHG emission intensity 
parallel with farm size increment. In parallel, column 
4 indicates a significantly positive coefficient for farm 
size, signifying that expanding the farm size was asso-
ciated with an increase in per capita GHG emissions. 
The positive coefficient for economic development 
(edev) detailed in Table 2, contrasted with its negative 
quadratic term, lent credence to the classical Environ-
mental Kuznets Curve (EKC) hypothesis in the context 
of economic advancement and farm GHG emissions. 
This suggests an  initial rise followed by a subsequent 
decline in  GHG emissions with ascending economic 
levels in agricultural zones.

Additional regression results for control variables 
illuminated the positive influence of  pesticides and 
fertilisers on  GHG emission levels, highlighting the 
addition of  GHG through aerosol pesticide particles 
and vapours. The primary impact of chemical fertilis-
ers on the atmosphere originates from nitrogen-based 
compounds, where emissions such as  nitrous oxide 
and methane arise from ammonia volatilisation and 
nitrification-denitrification processes. Although the 
coefficient for irrigation level was negative for both 
GHG  emission intensity and per capita emissions, its 
impact was not significant, suggesting a  minor role 
in  GHG reduction. Enhanced irrigation modified soil 
water composition, which substantially influenced ag-
ricultural GHG emissions. Agricultural mechanisation, 
indicative of on-farm science and technology applica-
tions, exerted a  considerable negative effect on  both 
GHG emission metrics, proposing that agricultural 
mechanisation aided in  the abatement of  GHG emis-
sions. Implementing advanced agricultural machinery 
and fostering farm management through AI and IoT 
technologies stood as viable measures for GHG reduc-
tion. Additionally, the regression outcomes portrayed 
a negative coefficient for agricultural management level 
on emissions, asserting that elevated management prac-
tices curtailed GHG outputs. Lastly, agricultural policy 
factors exhibited a  pronounced negative coefficient, 
denoting a constraining influence on GHG emissions, 
whereby policy enforcement augmented farm manage-
ment efficiency and curbed high-emission activities.

Non-linear analytical model and analysis. Build-
ing on the previous theoretical foundation that deline-
ated the relationship between farm size and GHG emis-
sions, the study revealed that the impact of agricultural 
policies, technological advancements in agricultural ma-
chinery, and management practices on GHG emissions 
became progressively evident with increasing farm size, 
positing a  potential non-linear progression of  emis-

Table 2. Estimation of linear model

Variable (1) OLS-gei (2) FE-gei (3) OLS-pge (4) FE-pge

lnfar 0.1381
(3.7628)***

0.1357
(5.4890)***

0.0682
(1.9978)**

0.0473
(4.3213)***

lnedev 0.1789
(2.0345)**

0.1631
(1.1865)*

0.1832
(2.2541)**

0.1951
(0.8382)*

Slnedev –0.1567
(–2.2376)**

–0.1478
(–2.6425)*

–0.1637
(–2.4678)**

–0.1842
(–2.4932)**

lnpes 0.1387*
(6.2353)***

0.1389**
(4.3287)***

0.1825*
(3.8765)***

0.1374**
(6.9271)***

lnfer 0.1825
(4.2329)***

0.1526**
(6.8923)***

0.1151***
(1.9832)**

0.1774**
(3.0483)***

lnirri –0.0823
(–1.7256)*

–0.0926
(–0.6374)

–0.0792
(0.7951)

–0.0792
(–0.6743)

lnagm –0.1271
(–1.9826)**

–0.1434
(–2.0328)**

–0.1205
(–3.2018)***

–0.1522
(–2.7533)***

lnmle –0.0926
(–2.2983)**

–0.0844*
(–2.3634)**

–0.0927**
(–3.1234)***

–0.0735*
(–3.6401)***

apol –0.1915
(–2.7298)***

–0.2416
(–3.2345)***

–0.1064
(–1.9342)*

–0.2512
(–2.1567)**

_cons
3.8231 3.9712 3.1824 4.9212

(9.2817)*** (9.2817)*** (9.2817)*** (9.2817)***
R2 0.9153 0.9464 0.8326 0.8859
F-test – 123.69 – 120.23

Hausman 
test – 78.95 – 89.49

*, **, *** significant at 10%, 5%, and 1% level, respectively; the 
significance levels are denoted using T statistics, presented 
in parentheses; gei – GHG intensity per ha, encapsulating 
the emissions produced per km2 of farm area; pge – per 
capita GHG emission intensity, far – farm area; edev – eco-
nomic development level; Slnedev – quadratic term 
of  lnedev; pes – pesticide; fer – fertiliser; irri –  irriga-
tion; agm – agricultural machinery; mle – management 
level; apol – agricutural policy; _cons – constant term 
Source: Adapted from Adedoyin et al. (2020)
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sions. Therefore, the linear regression analysis presented 
earlier uncovered a  discontinuous pattern, initially fa-
cilitating an  increase in  emissions before transitioning 
to a  suppressive phase. In response to  these dynamics, 
this research devised an advanced non-linear model (4), 
which integrated the squared term of  farm size (farm 
area) to refine model (3). Model (4) retained the same set 
of variables as its predecessor, introducing Slnfar as the 
squared term of lnfar. An examination of the regression 
outputs detailed in  Table  3, particularly the first and 
third columns, elucidated a distinct pattern: the coeffi-
cients pertaining to  lnfar as base explanatory variables 
were markedly positive, while those correlated with the 
squared term manifested a negative trajectory. This anal-
ysis substantiated the existence of an inverted U-shaped 
relationship between farm size and GHG emissions. 
As farm size increased, both the emission intensity and 
per capita emissions initially escalated before demon-
strating a downturn, depicting a bell-shaped curve.

Refining the articulation of  GHG emission dynamics 
based on farm size, we observed that below the threshold 
of 0.58 km² (870 mu), farm expansion was associated with 
elevated GHG emission intensity. During this nascent 
phase, the methods deployed for pesticide and fertiliser 
application were unsophisticated, and the extent of irri-
gation was limited. Investment in farm management and 
technological infrastructure was generally modest, with 
infrastructure such as roads remaining underdeveloped. 
Concurrently, local government priorities may skew to-
wards economic growth, potentially overshadowing en-
vironmental considerations. Paired with a more relaxed 
environmental oversight, this period was characterised 
by  increased GHG emission intensity, correlated with 
concurrent growth in agricultural scale and the imperative 
of enhanced food production. Upon exceeding the farm 
size threshold of 0.58 km², a reduction in GHG emission 
intensity was observed with additional expansion. This 
transition signified a  shift towards mature agricultural 
practices that balance productivity with environmental 
stewardship. Enhanced techniques in  nutrient manage-
ment, irrigation, and farm operation were implemented, 
supported by increased investment in infrastructure and 
roads. Policy influence became evident, promoting sus-
tainable input use and energy sources. Market forces and 
strict environmental policies drove farms towards greater 
efficiency, leading to lowered GHG emissions.

Per capita GHG emissions exhibited a trend of  ini-
tially increasing and then decreasing, with a  turning 
point at 0.69 km². The critical value of farm population 
agglomeration on  GHG emissions per unit area was 
lower than the effect of  farm population agglomera-

tion on per capita GHG emissions, suggesting that the 
GHG emission effect brought on by an increase in farm 
size first reduced the intensity of  farm GHG  emis-
sions, and then the intensity of  per capita emissions 

Table 3. Estimation of non-linear model

Variable (1) gei (2) gei (3) pge (4) pge

lnfar 1.1532
(2.3738)**

0.7532
(4.826)***

1.2136
(5.2938)***

0.8766
(3.3246)***

Slnfar –0.0352
(–2.0283)** – –0.0652

(–2.4829)** –

lnedev 0.1723
(1.9638)**

0.1541
(2.3283)**

0.1821
(2.1023)**

0.1632
(2.1672)**

Slnedev –0.0412
(–2.0283)**

–0.0762
(–2.0283)**

–0.0762
(–2.0283)**

–0.0582
(–2.0283)**

lnpes 0.1352
(3.2793)***

0.1762
(4.2304)***

0.1425
(5.8634)***

0.1354**
(3.9353)***

lnfer 0.1622
(3.2394)***

0.1724
(2.1832)**

0.1452
(4.2345)***

0.1524
(1.9746)**

lnirri 0.0928
(0.7553)

0.0725
(1.2874)

0.0815
(1.0728)

0.0775
(0.9723)

lnagm –0.0812
(–1.9820)**

–0.0911
(–1.2474)*

–0.0798
(–2.4937)**

–0.0892
(–2.7532)**

lnmle –0.1016
(–1.9729)**

–0.0974*
(–2.4389)**

–0.1013**
(–3.1819)***

–0.8295*
(–3.4983)***

apol –0.1438
(–5.2983)***

–0.1873**
(–4.4526)***

–0.2011**
(–4.2235)***

–0.1097**
(–3.9473)***

size1 × 
lnfar – –0.4062

(–2.8656)*** – –0.4154
(–3.0635)***

size2 × 
lnfar – –0.8405

(–1.9864)** – –0.9789
(–1.9702)**

size3 × 
lnfar – –1.2348

(–2.0149)** – –1.5289
(–2.2961)**

size4 × 
lnfar – –0.7999

(–2.4227)** – –0.9637
(–3.0153)***

_cons 5.2321
(8.392) ***

3.6876
(9.2308) ***

4.5231
(10.5022) ***

4.3875
(8.3973) ***

R2 0.8012 0.9126 0.8907 0.8903

*, **, *** significant at  10%, 5%, and 1% level, respec-
tively; the significance levels are denoted using T sta-
tistics, presented in  parentheses; gei – GHG intensity 
per ha, encapsulating the emissions produced per km2 
of  farm area; pge – per capita GHG emission intensity, 
far – farm area; Slnfar – squared term of lnfar; edev – eco-
nomic development level; Slnedev  –  quadratic term 
of lnedev; pes – pesticide; fer – fertiliser; irri – irrigation; 
agm – agricultural machinery; mle – management level; 
apol – agricutural policy; size1, size2, size3, size4 – cat-
egorical variables for four different farm-size categories 
(family-sized farms, medium-sized farms, large-sized farms, 
super-sized farms, respectively); _cons – constant term
Source: Adapted from Hu and Fan (2020)
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decreased. To a certain extent, it shows that it is more 
difficult to  reduce per capita GHG  emissions from 
farms than to  reduce  GHG  emissions per unit area. 
Therefore, this rule should be observed in the creation 
of agricultural emission reduction programs to gradu-
ally promote the reduction of GHG emissions.

Moreover, this study categorised farm sizes into five 
categories according to the extent of farmland, conduct-
ing non-linear regression analysis to compare updated 
results with previous findings. Utilising small farms as 
a baseline, four dummy variables representing different 
farm sizes were established. To forge a new non-linear 
model (5), four interactive terms involving these dummy 
variables and farm sizes were integrated into model (3). 
Within this advanced model, farm size multipliers were 
coupled with dummy variables, signified by  the terms 
sizeit,k and lnpsiit, sizeit,k. Remaining factors were aligned 
with those in  model (3). The deduced outcomes are 
showcased in columns (2) and (4) of Table 3. The impact 
of  farm size on  GHG emission intensity in  model (5) 

was captured by the coefficient γ1 + θk. To exemplify, 
examine the column (2) dataset: a farm size increment 
of  1% prompts a  0.753% rise in  GHG emission inten-
sity for small farms, while family farms saw a  0.347% 
increase. Contrastingly, medium-sized farms noted 
a 0.087% diminution in emission intensity per 1% farm 
expansion. Large farms similarly witnessed a  0.482% 
drop in  emission intensity for each 1% size increase, 
and super farms exhibited a 0.047% decrease in emis-
sion intensity per 1% growth. Varying farm sizes had 
a bell-curved influence on GHG emission intensity, sug-
gesting the lowest intensity occured at an intermediate 
farm size range of 0.45 km² to 0.58 km². The regression 
insights of column (4) mirror this bell-shaped trend, re-
vealing a peak of per capita GHG emissions at a larger 
farm size than indicated in column (2). These non-linear 
patterns correspond with those discovered in  model 
(4), reinforcing the idea of an optimal farm size for sus-
tainable ecological progress, which is  applicable both 
in terms of GHG emissions per unit area and per capita.

Table 4. Results of 2SLS estimation

Variable (1) 2SLS-gei (2) 2SLS-gei (3) 2SLS-pge (4) 2SLS-pge
lnfar 1.2861 (3.2091)*** 0.7565 (3.9837)*** 1.3104 (4.0518)*** 0.8788 (4.3291)***
Slnfar –0.0783 (–1.9691)** – –0.0983 (–1.7091)* –
lnedev 0.1429 (2.0725)** 0.1534 (2.4491)** 0.1235 (1.6624)* 0.1566 (1.8603)*
Slnedev –0.0436 (–2.1633)** –0.0692 (–2.0731)** –0.0832 (–2.4321)** –0.0746 (–2.2721)**
lnpes 0.1350 (3.0325)*** 0.1422 (4.2833)*** 0.1294 (5.0916)*** 0.0964 (3.2671)***
lnfer 0.1023 (3.8245)*** 0.1076 (2.0334)** 0.0892 (1.9951)** 0.1182 (3.8615)***
lnirri 0.0992 (0.9246) –0.0431 (–1.2832) 0.0897 (2.0972)** –0.0856 (–1.5728)*
lnagm –0.1393 (–2.5476)** –0.0958 (–1.6501) –0.1026 (–2.5792)** –0.0962 (–1.7547)*
lnmle –0.1239 (–3.2351)*** –0.1333 (–4.8038)*** –0.1017 (–2.9626)*** –0.1165* (–3.8291)***
apol –0.1074 (–1.7351)* –0.1539 (–2.2301)** –0.1903 (–2.4982)** –0.1027 (–1.8905)*
size1 × lnfar – –0.4065 (–2.1582)* – –0.4166 (–1.8638)*
size2 × lnfar – –0.8412 (–1.7469)* – –0.9793 (–1.9902)**
size3 × lnfar – –1.2388 (–2.7413)*** – –1.5301 (–1.9901)**
size4 × lnfar – –0.8022 (–2.0478)** – –0.9643 (–1.7313)*
_cons 4.1275 (9.6014)*** 3.5012 (8.7918)*** 2.729 (10.1532)*** 2.3755 (9.3613)***
R2 0.8905 0.9216 0.8952 0.8841
The first stage of F-test 178.14 204.27 146.13 189.13
The second stage of F-test 80.24 99.15 80.43 70.98
Sargan-Hansen P 0.23 0.25 0.33 0.29

*, **, *** significant at 10%, 5%, and 1% level, respectively; the significance levels are denoted using T statistics, presented 
in parentheses; 2SLS – two-stage least squares; gei – GHG intensity per ha, encapsulating the emissions produced per km2 
of farm area; pge – per capita GHG emission intensity, far – farm area; Slnfar – squared term of lnfar; edev – economic develop-
ment level; Slnedev – quadratic term of lnedev; pes – pesticide; fer – fertiliser; irri – irrigation; agm – agricultural machinery; 
mle – management level; apol – agricutural policy; size1, size2, size3, size4 – categorical variables for four different farm-size 
categories (family-sized farms, medium-sized farms, large-sized farms, super-sized farms, respectively); _cons – constant term 
Source: Adapted from Hu and Fan (2020)
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Regression analysis of instrumental variables
The relationship between farm size and GHG emis-

sions might be  subject to  endogenous biases. To  ad-
dress these issues in  the regression analysis, the use 
of  instrumental variable estimation is  essential. The 
study introduced controls for fixed effects to  allevi-
ate concerns about collinearity within the regression 
framework. This framework included the use of instru-
mental variables. The estimations obtained using the 
two-stage least squares (2SLS) technique are presented 
in Table 4, showcasing the refined analysis outcomes.

Upon analysing the first-stage regression outcomes, 
the computed F-statistic substantially exceeded the 
critical value, thereby eliminating concerns about weak 
instrumental variables. So, if highway proximity was 
considered an instrumental variable, there seemed to be 
no direct association with farm size. Additionally, the 
non-significant Sargan-Hansen statistic led us to main-
tain the null hypothesis that the external instrumental 
variables did not exert influence, which confirmed the 
validity of the chosen road instrumental variable. Fur-
ther, second-stage regression indicated a non-linear re-
lationship between farm size and GHG emissions; both 

emission intensity and per capita emissions initially 
rose and then declined with an  increasing farm area. 
Crucially, the consistency of the regression coefficients 
for farm size with those documented in Table 3 under-
scored the robustness of  the established correlation, 
unaffected by any notable discrepancies.

Robustness test
Since 2019, the Chinese government has initiated 

a  suite of  initiatives designed to  reduce emissions 
from agriculture, marking significant strides towards 
green proliferation in  the agricultural and rural do-
mains. Mindful of  the potential for these extensive 
policy measures to introduce bias into the previously 
delineated regression outcomes, this paper segment-
ed the aggregate dataset to  be used in  the 2SLS re-
gression analysis into two distinct cohorts, designat-
ing them as subsample 1 (pre-2019) and subsample 2 
(post-2019). Table 5 breaks down the regression re-
sults, with columns (1) to (4) poring over subsample 
1’s data and columns (5) to (8) dissecting the regres-
sion details correlative to subsample 2. The analyses 
revealed critical insights: farm size, its square, the 

Table 5. Results of 2SLS estimation for subsamples

Variable
Subsample 1 Subsample 2

(1) 2SLS-gei (2) 2SLS-gei (3) 2SLS-pge (4) 2SLS-pge (5) 2SLS-gei (6) 2SLS-gei (7) 2SLS-pge (8) 2SLS-pge

lnfar 1.2143
(2.1872)**

0.7589
(3.872)***

1.2873
(1.9361)*

0.8772
(2.231)**

1.1343
(2.4367)**

0.7592
(3.0326)***

1.2869
(2.1307)**

0.8792
(4.1017)***

Slnfar –0.0892
(–2.131)** – –0.0942

(–1.733)* – –0.0762
(–1.692)* – –0.1092

(–2.135)** –

size1 × lnfar – –0.4088
(–2.133)** – –0.4172

(–1.986)* – –0.4092
(–2.472)** – –0.4199

(–2.278)**

size2 × lnfar – –0.8471
(–1.852)* – –0.9761

(–1.892)* – –0.8482
(–2.421)** – –1.0122

(–3.827)***

size3 × lnfar – –1.2382
(–1.932)* – –1.5255

(–2.309)** – –1.2383
(–3.915)*** – –1.5329

(–2.328)**

size4 × lnfar – –0.8072
(–1.837)* – –0.9692

(–2.457)** – –0.8083
(–3.872)*** – –0.9681

(–3.537)***

Control yes yes yes yes yes yes yes yes

_cons 4.2321
(8.897)***

3.3829
(9.137)***

4.3204
(7.432)***

4.8231
(8.159)***

2.0324
(7.805)***

3.2912
(9.842)***

2.9912
(10.145)***

4.0293
(9.816)***

R2 0.8905 0.9172 0.9216 0.8623 0.9817 0.9452 0.9172 0.8962

*, **, *** significant at 10%, 5%, and 1% level, respectively; the significance levels are denoted using T statistics, presented 
in parentheses; 2SLS – two-stage least squares; gei – GHG intensity per ha, encapsulating the emissions produced per km2 
of farm area; pge – per capita GHG emission intensity, far – farm area; Slnfar – squared term of lnfar; size1, size2, size3, 
size4 – categorical variables for four different farm-size categories (family-sized farms, medium-sized farms, large-sized 
farms, super-sized farms, respectively); _cons – constant term
Source: Adapted from Bekun and Alola (2022)
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farm size interaction term, and all four categorical 
variables exhibited statistically significant regression 
coefficients. The striking stability in these coefficient 
values indicated that the relationship between farm 
size and GHG emissions persisted, tracing an  in-
verted U-shape, even in  the presence of agricultural 
policy implementations.

Previously, empirical investigations have primarily 
represented farm size in terms of farm area. The char-
acterisation of farm size can include not only the farm 
area but also the number of farmers, denoted as pfa. 
This study examined the potential inaccuracies that 
might arise from using pfa as a proxy for farm size, con-
sidering a variety of measurement indices. The results 
from the 2SLS regression analysis, which positioned 
pfa as the key explanatory variable, are detailed in Ta-
ble 6. The correlation coefficients featured in Table 6 
show a  moderate decrease relative to  those  in  Ta-
ble 4, indicating that the expansion of farm area had 

a more significant influence on GHG emissions com-
pared to  variations in  pfa. This empirical evidence 
suggested that increasing farm area up to a  certain 
threshold may help achieve GHG emission reduction 
goals. It further clarified that when farm size reached 
an optimal level, both the intensity of GHG emissions 
and per capita GHG emissions declined, highlighting 
the crucial balance between farm scale and environ-
mental impact.

DISCUSSION

In pursuit of emission reduction goals within China, 
the challenge of controlling GHG emissions from agri-
cultural activities has come to  the forefront. Strategic 
adjustments to farm sizes can lead to lower GHG emis-
sions both in  terms of  intensity from agricultural op-
erations and on a per capita basis while also facilitat-
ing the development of eco-friendly farming practices. 
The dynamic between farm size and GHG emissions 
was identified as an inverted U-shaped curve, aligning 
with the findings of carbon emissions in Chinese plant-
ing (Li et  al. 2023). Yet, studies such as  those by Zhu 
et al. (2022) underlined that larger farming operations 
can offer improved fertiliser use efficiency, curbing the 
environmental degradation caused by fertiliser overuse. 
This paper arrived at a distinct conclusion by consider-
ing a broader array of factors beyond merely the influ-
ences of fertilisers.

Currently, the Chinese agricultural landscape 
is  dominated by  small farms. As  of late 2021, the 
country has more than 3.8 million family farms, with 
an average size of 134.3 acres. This accords with this 
study’s findings that suggest an  optimal farm size 
ranging between 0.45  km2 and 0.58 km2. Thus, pro-
moting the development of farms within this optimal 
size range can lead to a better allocation of resources, 
including management techniques, technology, irri-
gation systems, organic fertilisers, and infrastructure 
like roads. This approach not only supports the estab-
lishment of ecological farms but also mitigates envi-
ronmental detriments.

The government should align its emission reduction 
strategies with GHG legislation, aiming to lower the 
intensity of GHG emissions and per capita emissions. 
To meet emission reduction objectives, the preferred 
strategy should involve cautiously expanding farm 
size rather than simply increasing the number of in-
dividuals employed in agriculture. This recommenda-
tion is essential for balancing agricultural productiv-
ity with environmental conservation.

Table 6. Estimation outcomes with 2SLS method using 
agricultural population of farm as proxy variable

Variable (1) 2SLS-gei (2) 2SLS-gei (3) 2SLS-pge(4) 2SLS-pge

lnpfa 1.1052
(4.3124)***

0.4302
(6.1093)***

0.9222
(3.0518)***

0.5233
(2.9032)***

Slnpfa –0.0672
(–2.3629)** – –0.0362

(–1.9656)** –

size1 × lnfar – –0.1045
(–1.8656)* – –0.1840

(–2.3012)**

size2 × lnfar – –0.4667
(–2.3414)* – –0.5863

(–2.9362)***

size3 × lnfar – –0.7028
(–1.7043)* – –1.1762

(–1.4026)

size4 × lnfar – –0.5019
(–2.2518)** – –0.4992

(–2.5163)**

Control yes yes yes yes

_cons 4.2319
(7.337)***

3.6782
(8.192)***

3.2802
(9.832)***

4.2422
(9.184)***

R2 0.8938 0.8299 0.8901 0.9253

*, **, *** significant at 10%, 5%, and 1% level, respectively; the 
significance levels are denoted using T statistics, presented 
in parentheses; 2SLS – two-stage least squares; gei – GHG 
intensity per ha, encapsulating the emissions produced 
per km2 of farm area; pge – per capita GHG emission inten-
sity; pfa – population of the farm in units of 10 000 people; 
Slnpfa – squared term of lnpfa; far – farm area; size1, size2, 
size3, size4 – categorical variables for four different farm-size 
categories (family-sized farms, medium-sized farms, large-sized 
farms, super-sized farms, respectively); _cons – constant term
Source: Adapted from Bekun and Alola (2022)
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CONCLUSION

Conclusions and limitations. Mitigating GHG 
emissions in  agriculture, both in  intensity and per 
capita terms, is  imperative for fostering a  greener, 
low-carbon shift and ensuring sustainable agricul-
tural development. This study delved into the theo-
retical dynamics linking farm size with GHG emis-
sions, constructed an  econometric framework using 
Chinese agricultural GHG emissions and farm size 
data, and validated the robustness of  its findings 
through instrumental variables regression. The re-
search uncovered an  inverted U-shaped relationship 
between the escalating scale of farms and GHG emis-
sions. Farms of a moderate scope demonstrated lower 
levels of both GHG emission intensity and per capi-
ta GHG  emissions. Subsequent non-linear regres-
sion analyses, segmented by  farm size, pinpointed 
an optimal emission reduction zone within the range 
of  0.45  km² to  0.58 km². Moreover, a  comparative 
inquiry into the influence of  two predominant vari-
ables (farm size and agricultural workforce numbers) 
divulged a more pronounced impact of farm size ad-
justments on mitigating GHG emissions rather than 
per capita emissions, highlighting the greater chal-
lenge of attenuating per capita emissions from farms 
as opposed to area-specific emissions.

Constrained by the data and methodological scope 
of the study, the current analysis was limited to a pro-
vincial perspective on  the correlation between farm 
size and GHG emissions. It  left the dynamics at  the 
municipal level unexplored. Future research could 
expand the inquiry to  capture the intricacies of  the 
farm size-GHG emissions nexus at the city or county 
levels, offering a  more detailed and robust founda-
tion to  guide policies aimed at  achieving the dual 
carbon goals.
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