Rural development programmes: Lessons learnt, and knowledge advancement. A case study in Castilla-La Mancha (Spain)

Francisco Martínez Arroyo¹, Hugo Sacristán López¹, Juan Sebastián Castillo-Valero², María Carmen García-Cortijo²*

Citation: Martínez Arroyo F., Sacristán López H., Castillo-Valero J.S., García-Cortijo M.C. (2022): Rural development programmes: Lessons learnt, and knowledge advancement. A case study in Castilla-La Mancha (Spain). Agric. Econ. – Czech, 68: 393–402.

Abstract: Since the LEADER (Liaisons Entre Activités de Developpement de l'Economie Rural) method was launched in 1991, through its Rural Development Programmes, it has tried to support rural areas by promoting the creation of opportunities, strengthening rural territorial resilience and holding back depopulation processes. It has also introduced social considerations such as gender and age and has fostered the knowledge economy. One aspect of particular interest is employment: rural areas that offer employment opportunities can trigger a set of processes and dynamics that are positive for rural resilience in that they strengthen competitive, socially dynamic and economically viable spaces. The purpose of this article is to define the profile of a LEADER project that can generate and/or consolidate employment in the Spanish region of Castilla-La Mancha during the current 2014–2022 programming period. This is done by means of a study using ordered probit of the 4 465 projects by the Local Action Groups (LAGs). The study points to the preponderance of agro-industrial activity and the large size of the municipalities where employment is generated. It also finds that a very large proportion of the jobs created are for young people and that many women have found jobs in projects funded by the LAGs.

Keywords: job creation; LEADER programme 2014–2022; Local Action Groups; ordered probit model; rural areas

To improve the situation and circumstances of rural areas, public policies should aim to convert them into places that offer employment opportunities and are competitive, socially dynamic and economically viable. In this case, we focus on the results of the European LEADER (Liaisons Entre Activités de Developpement de l'Economie Rural) programme. Having been set up 30 years ago, LEADER is now a reality in the European rural environment: it has played a relevant role in rural development (Esparcia 2002; Turek 2012),

strengthening rural territorial resilience (Sánchez-Zamora et al. 2014) and holding back depopulation processes (Ruíz and Cañizares 2020).

LEADER introduced decentralisation of resource management, which allowed the population in each territory to act in line with its needs and reality, with a procedure for participation and endogenous decision-making on how to manage some of the European funds for rural environments (Bosworth et al. 2020). Today it is coming up to its seventh programming period;

¹Council for Agriculture, Water and Rural Development of the Government of Castilla-La Mancha, Toledo, Spain

²Regional Development Institute, University of Castilla-La Mancha, Albacete, Spain

^{*}Corresponding author: garcia.cortijo@gmail.com

LEADER has managed to be included in ordinary programming and this will continue during the transition period and the new programming period 2023–2027 (Navarro et al. 2015).

LEADER allows for the implementation of two types of projects: *i*) projects related to the private initiative through production projects and *ii*) projects designed to improve the rural environment and increase the level of services available. This dual path means that the LEADER budget can be deployed where municipalities have less critical mass and where the economic fabric is not strong enough, considering the heterogeneity and diversity of the rural environment (Li et al. 2019; Sánchez-Zamora and Gallardo-Cobos 2019).

LEADER is also a model for participation that mobilises agents and resources through the work of Local Action Groups (LAGs), generating structures for cooperation among local agents (Esparcia 2014). The LAGs serve to link public and private sectors, accumulating experience in their respective territories and each generating their own strategy for endogenous, local development rooted in the rural environment (Bosworth et al. 2015; Gargano 2021). The LAGs have become well-established and are recognised as agents for change in their territories (Esparcia et al. 2015), although how they act on tangible reality needs to be evaluated, especially for the purpose of drafting the new strategy for rural development 2023-2027 (Camacho et al. 2020). In essence, the LAGs can be useful for contributing to rural resilience and overcoming social disintegration and low participation by the local population. They can generate networks and social relations among different local agents, among different institutions and between institutions and communities (Dargan and Shucksmith 2008).

In theory, this LEADER/LAG dynamic should have a positive impact on regions, building social capital, boosting trust among local inhabitants and creating and strengthening collective identities (Dargan and Shucksmith 2008). But the results of the LEADER method have differed: some were as expected (Buller 2002; Nieto and Cárdenas 2017), while others were not. This suggests that the LEADER programmes were insufficient for dealing with the challenges that threaten the viability and even the existence of rural areas (Navarro et al. 2015; Camacho et al. 2020).

This is a topic that has received little attention among researchers in Castilla-La Mancha and not much more in other Spanish regions. For Andalusia, the most relevant studies are Rodríguez et al. (2019) and Camacho et al. (2020), and for Extremadura, Cárdenas and Nieto

(2017). On an international level, the most relevant are those by Gargano (2021) for Italy and the United Kingdom, by Turek (2012) for Romania and by Angioloni (2019) for Northern Ireland.

One of the LEADER goals is job creation, which is necessary for local development and therefore serves as a marker of achievement of LEADER programmes in rural areas (Camacho et al. 2020). Poland, Spain and Romania, followed by Finland, Portugal and Austria, are the countries in which most of the direct employment was generated during the 2014–2022 programming period (European Commission 2021).

This article analyses the adoption of the LEADER programme 2014–2022 in Castilla-La Mancha (Spain), a region that is largely rural. We aim to evaluate its effects on the generation or consolidation of employment and its contribution to the resilience of the most disadvantaged rural areas; also to learn more about the effect of the LEADER projects, which is necessary for planning and implementing the new programming period. It has been seen that the effects of the LEADER projects differ among the Member States for various reasons: type of territory, economic sector, project selection criteria, budget, etc. (Krístková and Ratinger 2012; Tocco et al. 2012; Schuh et al. 2016; Angioloni 2019; Konečný 2019).

The main objective of this study is to define the profile of a LEADER project that can generate and/or consolidate employment in Castilla-La Mancha. We then aim to answer the following questions on secondary objectives (SO):

- SO1: Does higher funding lead to better results in employment?
- SO2: Do LEADER programmes assist in generational renewal?
- SO3: Does the public sector make the greatest contribution to job creation?
- SO4: Do the most disadvantaged territories benefit most from LEADER programmes?

We use the 4 465 individualised files on projects applied for during the 2014–2022 programming period. These are subjected to an ordered probit model, considering the characteristics of the project, the production units and the territory.

MATERIAL AND METHODS

Sample and variables. The database used comprises the applications received for LEADER projects during the period 2014–2020 in Castilla-La Mancha. Castilla-La Mancha is a largely rural region in the centre

Table 1. Variables for the empirical model

Variables		Type	Description	Source
Dependent v	/ariable			
Achievement index for LEADER projects, programming period 2014–2022 (<i>AI</i>)		discrete	This measures project achievement based on jobs generated by the projects, both new (created for the first time) and consolidated (with improved working conditions for existing contracts), as certified by the applicant. Employment refers to annual full-time equivalents, or a proportional fraction in the case of contracts for a working day of less than 8 hours or a duration of less than one year. The continuous variable is transformed into a categorical variable as follows: Takes value 0 if with this project jobs were not generated/consolidated, value 1 if jobs were generated or consolidated, value 2 if jobs were created and consolidated.	Council for Agriculture, Water and Rural Development (Consejería de Agricultura, Agua y Desarrollo Rural) of the Government of Castilla-La Mancha (Junta de Comunidades de Castilla-La Mancha)
Independent	t variables			
	area of action (AA)	discrete	Takes value 1 if the amount of the project goes directly to the production unit (focal areas 3A and 6A) and 0 otherwise (focal areas 1A and 6B).	Drawn up by the authors based on data from the JCCM
	amount granted (AG)	continuous	The amount granted in the project, in EUR.	JCCM
Project character- istics	female employment (FE)	discrete	Forecast by the economic agents in their project application for promotion of female employment. Takes value 1 if stated as a target. Takes value 0 otherwise.	Drawn up by the authors based on data from the JCCM
	youth employment (<i>YE</i>)	discrete	Forecast by the economic agents in their project application for promotion of youth employment. Takes value 1 if stated as a target. Takes value 0 otherwise.	Drawn up by the authors based on data from the JCCM
Production	type of applicant (<i>TA</i>)	discrete	Takes value 1 if the enterprise is private, and 0 otherwise.	Drawn up by the authors based on data from the JCCM
unit	economic activity (EA)	discrete	Takes value 1 if the firm belongs to the agrifood sector, and 0 otherwise.	Drawn up by the authors based on data from the JCCM
Territorial environment	rural area (RA)	discrete	Type of rural area as established in Decree 108/2021, dated 19 October. Takes value 1 for low-populated area, value 2 for area at risk of depopulation, value 3 for intermediate rural area, value 4 for peri-urban rural area, and value 5 for urban area.	Decree 108/2021, of 19 October
	population (<i>POP</i>)	continuous	Population of the project applicant's location.	Instituto de Estadística de Castilla-La Mancha

Source: Authors' own elaboration

of Spain. It accounts for 16% of Spain's land surface, 11% of its municipalities and 4% of its population. Castilla-La Mancha has 29 LAGs which, up to 31 December 2020, had recorded a total of 4 465 projects.

Of the 4 465 initial applications, 2 013 were valid. This is a representative sample for the whole population in that it generates a sample error of 0.016. A cross-section was drawn up, and the variables specified in the study model are shown in Table 1.

The dependent variable is an achievement index (AI)which measures new and/or consolidated employment generated by the LEADER projects. New employment refers to jobs created for the first time, while consolidated employment is when the working conditions of existing jobs are improved, providing one of the following conditions is met: i) a temporary contract is replaced by an open-ended one, ii) contract duration is increased, iii) existing contracts are maintained. The figure for employment is determined after certification by the project applicant. It is measured by the number of full-time equivalents for a year or the proportional fraction in the case of contracts for a working day of less than 8 hours or a period shorter than one year. We thus obtain a continuous variable. Since our objective is to define the profile of a project that generates and/or consolidates employment, this is transformed into a categorical variable so that projects that neither generate nor consolidate employment take value 0, and those that either generate or consolidate employment take value 1, and those that both generate and consolidate employment take value 2.

The independent variables used were classified into three groups based on the theoretical framework established: i) project characteristics, namely, area of action (AA), amount granted (AG), female employment

(*FE*), youth employment (*YE*); *ii*) profile of the production unit, including type of applicant (*TA*) and applicant's economic activity (*EA*); *iii*) characteristics of the territorial environment in which the applicants are located, that is, the type of rural area (*RA*) and its population (*POP*). Table 2 gives descriptive statistics for these variables.

The data for the variables *AA*, *AG*, *FE*, *YE*, *TA* and *EA* come from the Council for Agriculture, Water and Rural Development (Consejería de Agricultura, Agua y Desarrollo Rural) of the Government of Castilla-La Mancha (Junta de Comunidades de Castilla-La Mancha); for the type *RA* from Decree 108/2021 dated 19 October and its *POP* from the Castilla-La Mancha Statistics Institute (Instituto de Estadística). The STATA 15 software was used to obtain the econometric results.

Functional form of the model. The model used to measure the factors determining the real employment generated by the LEADER projects is ordered logit/probit because it is the most appropriate for cross-section data and for the definition of the endogenous variable (AI), which is ordered with values 0, 1, 2 according to whether the applicants did not generate employment, in which case the value is 0; if employment and value were generated or consolidated it is 1 and, if they were generated and consolidated it is 2. The Akaike information criterion (AIC) and Bayesian information criterion (BIC) determined that the study should use an ordered probit model (AIC = 1 534.351, BIC = 1 590.425) as opposed to a logit model (AIC = 1523.307, BIC = 1579.38), because both statistics had higher values for the probit model (Table 3).

Bearing in mind that the dependent variable AI^* represents the probability that a project (i) will generate employment, the model is defined as in Equation (1).

Table 2. Descriptive statistics for variables

Continuous variables	Minimum	Minimum Maximum		Mean		SD	
Amount granted (IC)	309.78		316 152	30 738.28	·	38 978.50	
Population (POP)	1.00	1.00		2 982.55		4 585.22	
Discrete variables	Value 0	Value 1	Value 2	Value 3	Value 4	Value 5	
Achievement index (AI)	1 117	680	216	_	_	_	
Area of action (AA)	1 138	875	_	_	_	_	
Female employment (FE)	1 828	185	_	_	_	_	
Youth employment (YE)	1 816	197	_	_	_	_	
Type of applicant (<i>TA</i>)	894	1 119	_	_	_	_	
Economic activity (EA)	1 784	229	_	_	_	_	
Rural area (RA)	_	1 327	81	507	95	3	

Source: Authors' own elaboration

Table 3. Akaike information criterion (AIC) and Bayesian information criterion (BIC)

Model	Observations	ll(null)	ll(model)	d <i>f</i>	AIC	BIC
Probit	2 013	$-1\ 878.021$	-757.1755	10	1 534.351	1 590.425
Logit	2 013	$-1\ 878.021$	-751.6533	10	1 523.307	1 579.380

ll(null) – likelihood, constant-only model; ll(model) – log likelihood

Source: Authors' own elaboration

$$AI_i^* = \beta_k X_{k,i} + \varepsilon_i \tag{1}$$

where: AI^* – depending on the 3 possible answers for the achievement index, would be: AI = 0 si $AI^* \le \mu_1$; AI = 1 si $\mu_1 < AI^* \le \mu_2$; AI = 2 si $\mu_2 < AI^*$ (also, $\mu_1 < \mu_2$); μ – intercept; X – matrix of k independent variables; β – parameters to be estimated; ϵ – random disturbance, which follows normal distribution, $\epsilon \sim N(0.1)$.

In probabilistic terms, the Equation (1) would be analytically expressed as $P(AI = j|X_k) = F(\mu_j - \beta_k X_k) - F(\mu_{j-1} - \beta_k X_k)$, where: P – probability; F – function of normal distribution; j – dependent variable value.

If *X* is replaced by each of the independent variables, the result is:

$$AI_{i}^{*} = \beta_{1}AA_{i} + \beta_{2}AG_{i} + \beta_{3}FE_{i} + \beta_{4}YE_{i} + \beta_{5}TA_{i} + \beta_{6}EA_{i} + \beta_{7}RA_{i} + \beta_{8}POP_{i} + \varepsilon_{i}$$
(2)

where: AA – area of action; AG – amount granted; FE – female employment; YE – youth employment; TA – type of applicant; EA – economic activity; RA – rural area; POP – population.

Table 4. Estimation of ordered probit coefficients

RESULTS AND DISCUSSION

Statistical results

Estimation of the probit model is summarised in Table 4. The model estimated, with a chi-squared statistic for which the associated probability is below 0.05 and a McFadden's pseudo R^2 of 0.59, above 0.2, represents a good-quality fit. All the exogenous variables were significant, with $P \le 0.05$. The estimate was completed with the marginal effects (Table 5).

Finally, we estimate the probability that an applicant for a LEADER project would create or consolidate employment through the project (Table 6). The result is that for 41% of applicants it would be created (or consolidated) whereas for 59% it would not.

Achievement of objectives and discussion

In Castilla-La Mancha, as in other regions in Germany, Austria, Sweden and Czech Republic, the LAGs can define their selection criteria, or alter them according to specific calls. In Castilla-La Mancha, 75% of the LEADER budget is allocated to and implemented in municipalities with less than 10 000 inhabitants, and

Independent variable	Coefficient	SE	z	P > z
Area of action (AA)	2.8262680	0.1357233	20.82	0.000
Amount granted (AG)	3.80E-06	9.33E-07	4.07	0.000
Female employment (FE)	0.3742365	0.1114813	3.36	0.001
Youth employment (YE)	0.5940337	0.1103137	5.38	0.000
Type of applicant (TA)	0.6859264	0.1427488	4.81	0.000
Economic activity (EA)	0.2393841	0.0986849	2.43	0.015
Rural area (RA)	0.1182834	0.0384540	3.08	0.002
Population (POP)	0.0000388	7.50E-06	5.18	0.000
$/\text{cut1}(\mu_1)$	2.3979750	0.1219806	_	_
/cut2 (μ ₂)	4.9989770	0.1572557	_	
Pseudo R^2		0.		
Likelihood ratio chi²(8)		2 241.		
Probability > chi ²		0.		

z – quotient between the estimate of the coefficient and SE; /cut1(μ_1) – intercept 1; /cut2 (μ_2) – intercept 2

Source: Authors' own elaboration

Table 5. Average marginal effects

Independent	Achievement index	d.,/d.,	Delta-method		ו הו	95% confidence interval	
variable	(AI)	dy/dx	SE	z	P > z	lower end	upper end
Area	AI = 0	-0.242110	0.014007	-17.29	0.000	-0.269570	-0.214660
of action	AI = 1	-0.105470	0.026445	-3.99	0.000	-0.157300	-0.053640
(AA)	AI = 2	0.347582	0.021123	16.46	0.000	0.306182	0.388983
Amount	AI = 0	-3.30E-07	8.31E-08	-3.92	0.000	-4.90E-07	-1.60E-07
granted	AI = 1	-1.40E-07	4.65E-08	-3.05	0.002	-2.30E-07	-5.10E-08
(AG)	AI = 2	4.67E-07	1.15E-07	4.07	0.000	2.42E-07	6.92E-07
Female	AI = 0	-0.032060	0.009860	-3.25	0.001	-0.051380	-0.012730
employment	AI = 1	-0.013970	0.004973	-2.81	0.005	-0.023710	-0.004220
(FE)	AI = 2	0.046025	0.013547	3.40	0.001	0.019472	0.072577
Youth	AI = 0	-0.050890	0.010270	-4.96	0.000	-0.071020	-0.030760
employment (<i>YE</i>)	AI = 1	-0.022170	0.005861	-3.78	0.000	-0.033660	-0.010680
	AI = 2	0.073056	0.013042	5.60	0.000	0.047494	0.098617
Type	AI = 0	-0.058760	0.012625	-4.65	0.000	-0.083500	-0.034020
of applicant	AI = 1	-0.025600	0.008111	-3.16	0.002	-0.041490	-0.009700
(TA)	AI = 2	0.084357	0.017876	4.72	0.000	0.049321	0.119393
Economic	AI = 0	-0.020510	0.008590	-2.39	0.017	-0.037340	-0.003670
activity	AI = 1	-0.008930	0.004114	-2.17	0.030	-0.017000	-0.000870
(EA)	AI = 2	0.029440	0.012098	2.43	0.015	0.005729	0.053151
D. I	AI = 0	-0.010130	0.003368	-3.01	0.003	-0.016730	-0.003530
Rural area	AI = 1	-0.004410	0.001717	-2.57	0.010	-0.007780	-0.001050
(RA)	AI = 2	0.014547	0.004718	3.08	0.002	0.005300	0.023793
D	AI = 0	-3.30E-06	6.74E-07	-4.94	0.000	-4.70E-06	-2.00E-06
Population (<i>POP</i>)	AI = 1	-1.50E-06	4.16E-07	-3.48	0.000	-2.30E-06	-6.30E-07
(1 01)	AI = 2	4.78E-06	9.05E-07	5.28	0.000	0.000003	6.55E-06

z – quotient between the estimate of dy/dx and SE

Source: Authors' own elaboration

production projects are required to generate at least one job (European Commission 2021). The impact of the LEADER project can be seen in Table 6, which shows that 41% of the projects generated employment. If we consider the project profile, which is the main objective of this research, they are projects for production activities, which are boosted by the private sector, especially in the agri-food sector, take place in large territories and support employment for women and young people. We now explain each of these elements.

Variables relating to project characteristics. Aid granted directly to the improvement of business activity (AA) is the aid that has the greatest effect on the creation/consolidation of employment, in line with a LEADER programme that focused on strengthening the capacities of local agents (European Commission 2006; Neumeier 2016). However, the role

of public agents, whether local corporations or LAGs, was greatly limited in terms of employment by the legal impossibility of investing in production projects. In addition, there were financial limitations and local municipalities had limited funds because of the austerity imposed by Brussels after the financial bail-out. In Castilla-La Mancha, 45% of applications were for pure production projects, that is, private business activities that generated or consolidated at least one job.

A larger amount granted (*AG*) to the project is more likely to create/consolidate employment, thus achieving secondary objective SO1. These results are in line with those obtained by Cárdenas and Nieto (2017). In general, it is found that the influence of the measure increases with the amount of support provided, leading to the capital, investment and productivity effects (Alexiadis et al. 2013). Spain was among the countries

Table 6. Adjusted predictions

Delta-method	— Margin	SE	z	P > z	95% confidence interval		
Predict AI					lower end	upper end	
AI = 0	0.5931665	0.0216692	27.37	0	0.5506956	0.6356373	
AI = 1	0.4045544	0.0216109	18.72	0	0.3621978	0.4469109	
AI = 2	0.0022791	0.0005578	4.09	0	0.0011858	0.0033724	

AI – achievement index; z – quotient between the estimate of the margin and SE

Source: Authors' own elaboration

that received the largest budget and which used it best for job creation, together with Poland. Germany reports low job creation in relation to a high level of expenditure (European Commission 2021).

Applications accompanied by a forecast for the creation and/or consolidation of female (FE) and youth (YE) employment were more likely to achieve such a result, thus fulfilling secondary objective SO2. Along the same line are the results obtained by Gargano (2021), showing the importance of the LEADER projects for helping young people and women to find jobs in rural areas. Camacho et al. (2020) state that it is necessary to continue working on providing the same opportunities for women as for men in rural areas, and the same opportunities for people in rural areas as for those in cities. Even so, most jobs in rural environments in Castilla-La Mancha are still for older workers and men. Although the LEADER project introduced gender and generational perspectives, in practice the process is slow.

Variables relating to the production unit. Both variables were significant for studying the effects of the LEADER projects. On the one hand, if we consider the type of applicant (TA), private applicants (individuals or companies) proved more likely to generate employment than public ones, so secondary objective SO3 was not achieved. One reason for this is that the public sector, especially more distant administrations, focuses on urban areas and neglects rural territories (Camacho et al. 2020). However, Bjärstig and Sandström (2017) find that authorities have a facilitating role in rural areas where there is a weak and dispersed private sector. Other explanations are the increasing numbers of self-employed professionals settling in rural areas, greater representation of firms in LAGs, and poor awareness in some public administrations regarding territorial galvanization, which is often left to private businesses. Dąbrowski (2012) speaks of the symbolic adaptation of the public sector to existing activities merely for the purpose of receiving funding. Regarding economic activity (EA), it is the agrifood sector that shows the greatest probability of generating/consolidating employment in comparison with other economic sectors. These results are similar to those obtained for Andalusia by Camacho et al. (2020) who find that the rural economy is growing and developing in traditional sectors such as agriculture and agrifood. One reason is that the agrifood sector in Castilla-La Mancha is in a leading position within the Spanish agrifood industry.

Variables relating to the territorial environment. Regarding rural areas (RA) and those that have a larger population (POP) proved to be the most likely to generate employment, so secondary objective SO4 was not achieved. This is also the case in Extremadura, where the best results of the LEADER programme were in the areas that were most developed demographically and economically. This is because the most dynamic territories receive the most of the funding, most projects and the largest investments; while more isolated areas with older populations received less LEADER investment: 58% of rural areas had less than 4 projects, and 5% had none (Cárdenas and Nieto 2017). In addition, LAGs tend to focus their actions on the most important locations, neglecting smaller ones and thus increasing internal imbalance. This is one of the limitations of the LEADER projects and should be considered in future programming (Camacho et al. 2020) to ensure that funds reach the most disadvantaged rural areas (Opria et al. 2021).

Limitations and directions for future research

In spite of its theoretical implications, this study has some limitations. Firstly, a cross-cutting design was used, and the data were collected from a single region in the centre of Spain. Future studies could adopt a longitudinal design and could compare the results of different programming periods and draw comparisons with other regions of the country. Secondly, achievement of the LEADER objectives is measured by employment categories, without considering the number of jobs created.

CONCLUSION

In theory, the LEADER programme is a relevant and efficient tool for local rural development, supporting economic development and strengthening the social fabric and rural territories of the European Union (Dax and Copus 2016). Positive results have been found, for example, in Northern Ireland (Angioloni 2019), Romania (Turek 2012; Opria et al. 2021), Finland (Pylkkanen and Hyyrylainen 2005) and Slovenia (Volk and Bojnec 2014). However, as stated by Konečný (2019), the impact of the LEADER programme varies from one country to another, for various reasons.

Since 2015, Castilla-La Mancha has been a LEADER laboratory and was recognised in the European Commission (2021) report as one of the regions that placed priority on employment in the 2014–2022 programming period. Being an extensive territory with disadvantaged areas alongside other areas that are more dynamic and entrepreneurial, it has allowed for evaluation of the direct impacts of the Rural Development Programme and especially of the local participatory development methodology adopted by LAGs in the application of measure 19 'Support for local development of LEADER'.

In Castilla-La Mancha, the impact of LEADER on employment depends on a range of factors. Its success has been linked to private economic agents in the agrifood sector who are located in the more dynamic and more populated areas. Only 41% of projects helped to create and maintain employment, with a concern for female and youth employment. The more disadvantaged rural areas have been less proactive and have not seen a significant improvement in their resilience. Nor has employment linked directly or indirectly to the knowledge economy been particularly relevant.

These results allow for reflection on public policies and their effects on employment. Such reflection is necessary for the current European context to help create scenarios that will allow the efficiency of LEADER to improve in its next programming period starting on 1 January 2023. For a start and without intending to be exclusive or categorical, we make the following suggestions: i) implementation and deployment of direct aid for the creation or improvement of enterprises or employment in rural areas, because the LEADER programme has been seen to sometimes focus on more dynamic, urban areas (Shucksmith 2000) not only in Spain but also in France, Germany, Denmark and the United Kingdom (Opria et al. 2021); ii) supra-local approach to the deployment and maintenance of public and private services because supralocal and local government operate in closer contact with citizens (EPSA 2015); iii) greater weight for women and young people, even though Castilla--La Mancha together with Austria and Ireland reported the most effective approaches for identifying social inclusion needs (European Commission 2021); iv) improved funding of LAGs so that they can do more than just administer aid, thus taking advantage of the experience gained over the last 30 years and enabling them to galvanise all development in the rural environment. However, such funding should not lead to an increase in administrative tasks which may not be beneficial, as seen in the Czech Republic (European Commission 2021); and ν) creation of links with the rural knowledge economy and the opportunities it offers and their multiplier effect, ensuring that the LEADER programmes and LAGs do not focus on innovative, less rural territories, as occurred in France (Lacquement et al. 2020). The LEADER approach will undoubtedly be adapted to the new programming period, but we must ensure that any lessons learnt so far are taken into account in future actions. Also, the participatory methodology should become a firm backbone for rural development programmes if they are to have a direct influence on resilience in rural areas.

REFERENCES

Alexiadis S., Ladias C., Hasanagas N. (2013): A regional perspective of the Common Agricultural Policy. Land Use Policy, 30: 665–669.

Angioloni S. (2019): The LEADER approach and drivers of job creation. Growth and Change, 50: 548–568.

Bjärstig T., Sandström C. (2017): Public-private partnerships in a Swedish rural context – A policy tool for the authorities to achieve sustainable rural development? Journal of Rural Studies, 49: 58–68.

Bosworth G., Annibal I., Carroll T., Price L. (2015): Empowering Local Action through neo-endogenous development; the case of LEADER in England. Sociologia Ruralis, 56: 427–449.

Bosworth G., Price L., Hakulinen V., Marango S. (2020): Rural social innovation and neoendogenous rural development. In: Cejudo E., Navarro F. (eds.): Neoendogenous Development in European Rural Areas: Results and Lessons. Cham, Switzerland, Springer: 21–32.

Buller H. (2002): Re-creating rural territories: LEADER in France. Sociologia Ruralis, 40: 190–199.

Camacho J.A., Rodríguez M., Sánchez L.M. (2020). Employment and job creation in the LEADER approach. In: Cejudo E., Navarro F. (eds.): Neoendogenous Development

- in European Rural Areas: Results and Lessons. Cham, Switzerland, Springer: 235–250.
- Cárdenas G., Nieto A. (2017): Towards rural sustainable development? Contributions of the EAFRD 2007–2013 in low demographic density territories: The case of Extremadura (SW Spain). Sustainability, 9: 1173.
- Dąbrowski M. (2012): Shallow or deep europeanisation? The uneven impact of EU cohesion policy on the regional and local authorities in Poland. Environment and Planning C: Government and Policy, 30: 730–745.
- Dargan L., Shucksmith M. (2008): LEADER and innovation. Sociologia Ruralis, 48: 274–291.
- Dax T., Copus A. (2016): The future of rural development.
 In: Ragonnaud G. (ed.): Research for AGRI Committee
 CAP Reform Post-2020 Challenges in Agriculture.
 Brussel, Belgium, European Parliament: 221–303.
- EPSA (2015): The Public Sector as Partner for a Better Society. European Public Sector Award (EPSA). Available at https://www.eipa.eu/wp-content/uploads/2022/01/PublicSectorAsPartnerForABetterSociety.pdf (accessed Aug 8, 2022).
- Esparcia J. (2002): The LEADER Programme and the rise of rural development in Spain. Sociologia Ruralis, 40: 200–207.
- Esparcia J. (2014): Innovation and networks in rural areas. An analysis from European innovative projects. Journal of Rural Studies, 34: 1–14.
- Esparcia J., Escribano J., Serrano J. (2015): From development to power relations and territorial governance: Increasing the leadership role of LEADER Local Action Groups in Spain. Journal of Rural Studies, 42: 29–42.
- European Commission (2021): Evaluation Support Study on the Impact of Leader on Balanced Territorial Development. European Commission. Available at https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cmef/rural-areas/evaluation-support-study-impact-leader-balanced-territorial-development_en (accessed July 16, 2022).
- European Commission (2006): Basic guide: The LEADER Approach. Fact Sheet, Office for Official Publications of the European Communities. European Commission, Directorate General for Agriculture and Rural Development. Available at https://enrd.ec.europa.eu/sites/default/files/2B953E0A-9045-2198-8B09-ED2F3D2CCED3.pdf (accessed July 22, 2022).
- Gargano G. (2021): The bottom-up development model as a governance instrument for the rural areas. The cases of four Local Action Groups (LAGs) in the United Kingdom and in Italy. Sustainability, 13: 9123.
- Konečný O. (2019): The leader approach across the European Union: One method of rural development, many forms of implementation. European Countryside, 11: 1–16.

- Krístková Z., Ratinger T. (2012): Impact of the CAP's second pillar budget reformon the Czech economy. AGRIS on-line Papers in Economics and Informatics, 4: 49–59.
- Lacquement G., Chevalier P., Navarro F., Cejudo E. (2020): The LEADER approach in the recomposition of rural spaces in Languedoc-Roussillon (France) and Andalusia (Spain). In: Cejudo E., Navarro F. (eds.): Neoendogenous Development in European Rural Areas: Results and Lessons. Cham, Switzerland, Springer: 63–87.
- Li Y., Westlund H., Liu Y. (2019): Why some rural areas decline while some others not: An overview of rural evolution in the world. Journal of Rural Studies, 68: 135–143.
- Navarro F., Woods M., Cejudo E. (2015): The LEADER initiative has been a victim of its own success. The decline of the bottom-up approach in rural development programmes. The cases of Wales and Andalusia. Sociologia Ruralis, 56: 270–288.
- Neumeier S. (2016): Social innovation in rural development: Identifying the key factors of success. The Geographical Journal, 183: 1–27.
- Nieto A., Cárdenas G. (2017): 25 years of the LEADER initiative as European rural development policy: The case of Extremadura (SW Spain). European Countryside, 2: 302–316.
- Opria A.M., Rosu L., Iatu C. (2021): LEADER program An inclusive or selective instrument for the development of rural space in Romania? Sustainability, 13: 12187.
- Pylkkanen P., Hyyrylainen T. (2005): Mainstreaming the LEADER method into rural development policies in Finland. Finnish Journal of Rural Research and Policy (Maaseudun Uusi Aika), 4: 22–32.
- Rodríguez M., Sánchez L.M., Cejudo E., Camacho J.A. (2019): Variety in local development strategies and employment: LEADER programme in Andalusia. Agricultural Economics – Czech, 65: 43–50.
- Ruíz A.R., Cañizares M.C. (2020): Enhancing the territorial heritage of declining rural areas in Spain: Towards integrating top-down and bottom-up approaches. Land, 9: 216.
- Sánchez-Zamora P., Gallardo-Cobos R. (2019): Diversity, disparity and territorial resilience in the context of the economic crisis: An analysis of rural areas in southern Spain. Sustainability, 11: 1743.
- Sánchez-Zamora P., Gallardo-Cobos R., Ceña-Delgado F. (2014): Rural areas face the economic crisis: Analyzing the determinants of successful territorial dynamics. Journal of Rural Studies, 35: 11–25.
- Schuh B., Gorny H., Kaucic J., Kirchmayr-Novak S., Vigani M., Powell J., Hawketts E. (2016): The Role of the EU's Common Agricultural Policy in Creating Rural Jobs. Brussels, Directorate General for Internal Policies, Policy Department B (Structural and Cohesion Policies). Available at https://

eprints.glos.ac.uk/4432/1/IPOL_STU%282016%29573418_ EN.pdf (accessed July 31, 2022).

Shucksmith M (2000): Endogenous development, social capital and social inclusion: Perspectives from LEADER in the UK. Sociologia Ruralis, 40: 208–218.

Tocco B., Davidova S., Bailey A. (2012): Key Issues in Agricultural Labour Markets: A Review of Major Studies and Project Reports on Agriculture and Rural Labour Markets. Factor Markets Working Papers. Centre for European Policy Studies (CEPS). Available at http://aei.pitt.edu/58523/1/Factor_Markets_20.pdf (accessed Aug 2, 2022).

Turek A. (2012): Leader approach: An opportunity for rural development. In: Agrarian Economy and Rural Development – Realities and Perspectives for Romania. 3rd Edition of the International Symposium, Bucharest, Romania, Oct 11–13, 2012: 355–362.

Volk A., Bojnec S. (2014): Local action groups and the LEADER co-financing of rural development projects in Slovenia. Agricultural Economics – Czech, 60: 364–375.

Received: July 12, 2022 Accepted: August 22, 2022 Published online: October 6, 2022