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Abstract: We use chaotic artificial neural network (CANN) technology to predict the price of the most widely traded

agricultural futures — soybean futures. The nonlinear existence test results show that the time series of soybean futures

have multifractal dynamics, long-range dependence, self similarity, and chaos characteristics. This also provides a basis

for the construction of a CANN model. Compared with the artificial neural network (ANN) structure as our benchmark

system, the predictability of CANN is much higher. The ANN is based on Gaussian kernel function and is only suitable

for local approximation of nonstationary signals, so it cannot approach the global nonlinear chaotical hidden pattern.

Improving the prediction accuracy of soybean futures prices is of great significance for investors, soybean producers,

and decision makers.
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The efficient market hypothesis (EMH) is the cor-
nerstone of financial economics. The pioneering work
by Fama (1976) proposed a classic definition: market
is informationally efficient if it "fully reflects all avail-
able information”. As an inevitable result of the EMH,
people cannot accept the existence of long-range de-
pendence in financial time series because its existence
will allow a risk-free, profitable trading strategy. If the
market is information-efficient, arbitrage can prevent
the emergence of this strategy. However, many schol-
ars have questioned the EMH through empirical stud-
ies. They found that the stock market, exchange rate,
gold, and other financial markets did not fully comply
with the EMH, and found many financial anomalies:
such as nonlinearity, long-range dependence, predict-
ability, and so on. In order to solve the shortcomings
of the EMH in explaining many practical situations

of the capital market, the fractal market hypothesis
(FMH) as the frontier of econophysics has opened up
a new situation in the study of the financial market.

According to FMH theory (Haugen 1999), the chang-
es of asset prices are not random walks, but have the
durability of strengthening trends. The changes of as-
set prices today or in the future and initial state are
not independent from each other, but are continuously
related. It is also pointed out that the financial system
should be a complex nonlinear system, and should not
be considered as linear by EMH theory. At present, the
study of nonlinear financial market mainly includes
multifractal theory and chaos theory.

Multifractal and chaos theories reveal different as-
pects of the nonlinear nature of financial markets:
on the one hand, multifractal theory (Peters 1991; Rizvi
et al. 2014; Mensi et al. 2017; Shahzad et al. 2017; Zhu
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and Zhang 2018) shows the spatiotemporal organiza-
tion process of financial markets and reveals the long-
-range dependence and self similarity of financial time
series. On the other hand, chaos theory (Hanias et al.
2010; Pandey et al. 2010; Lahmiri 2017) provides for the
time evolution process of financial market. Although
the external performance of the financial market price
time series is irregular, its internal structure has inher-
ent certainty and nonlinearity, revealing that the finan-
cial time series has internal generation mechanism and
can be further forecast in the short-term.

The investigation of chaotic and multifractal dynam-
ics in nonlinear systems is also of paramount impor-
tance in terms of their predictability. A chaotic system
(signal) may have limited short-term predictability,
whilst multifractal and self similarity can increase the
possibility of accurate prediction of future sequences
of such signals.

Forecasting the price of financial time series can
help investors avoid risks and get higher returns.
It is a hot and challenging topic in the financial field.
At present, there are many research studies from vari-
ous fields to take on the challenge and it is an effective
way to perform the research using artificial neural net-
works (ANNs). ANN can deal with both linear and non-
linear data for forecasting the prices. Some researchers
thus have applied ANN technologies such as radial ba-
sis function (RBF) neural network and back propaga-
tion (BP) neural network to study the fluctuations and
predictions of the financial prices. Ma (2010) used the
BP neural network model to predict the electric power
shares and the Bank of China shares in 2009. Through
the construction of BP neural network prediction
model, Liu (2009) selected the gold futures contract de-
livered by the New York Futures Exchange in April 2008
as the empirical research object. The monthly closing
price data with the Shanghai Composite Index from
January 1993 to December 2009 were used to illustrate
the application of the BP neural network based algo-
rithm in predicting the stock index (Wang et al. 2011).
Falat and Marcek (2014) applied feed-forward ANN
of RBF type into the process of modelling and forecast-
ing the future value of USD/CAD time series.

The futures price of agricultural products has an im-
portant function of resource allocation. Moreover, the
Chicago Board of Trade (CBOT) is the largest soybean
futures exchange, and soybean futures is one of the
most active agricultural futures contracts. However,
there are few articles on price prediction of soybean
futures market, as far as we know: a futures forecast
model was presented by Gebremariam and Marchetti

(2018) providing season-average price forecasts and
using monthly futures prices, cash prices received,
basis values (cash prices less futures), and marketing
weights; Chan and Wan (2013) applied range-based
method to forecasting the daily high and low prices
of corn and soybeans futures; Wang and Gao (2018)
built a model to predict high and low prices of soybean
futures with the neural network. Therefore, another
problem of this paper is the prediction of soybean fu-
tures price using the model based on the internal gen-
eration mechanism of time series and ANN.

Thus, the purpose of our current research has basi-
cally two aspects. First, we try to evaluate the predict-
ability of soybean futures by examining their inherent
nonlinear dynamics, including inherent chaoticity and
multifractality. We used the largest Lyapunov exponent
(LLE) and the multifractal detrended fluctuation analy-
sis (MF-DFA) based on the extracted time-series gen-
eralized Hurst exponent to detect the chaotic and/or
multifractal characteristics of soybean futures. Spe-
cifically, the former allows the existence of nonlinear
deterministic maps to be checked, while the latter re-
veals the existence of long-range correlations without
assumptions about stationarity. Second, we aim to use
a special ANN as a potential dynamic system topology
to automatically extract hidden patterns and reveal the
nonlinear dynamics of their time series. In other words,
we construct an intelligent signal data mining and pre-
diction system based on chaos through ANN topol-
ogy, namely chaotic neural network. It is hoped that
the prediction accuracy of the chaotic artificial neu-
ral network (CANN) models can be higher than that
of the existing ANN benchmark models, so as to avoid
the model misspecification.

We contribute to the literature in the following way:
i) We try to study the nonlinear statistical character-
istics of soybean futures comprehensively and system-
atically from the perspective of econophysics. As far
as we know, no literature has studied it from this per-
spective. ii) By examining whether chaos is intrinsic,
we can clarify the short-term predictability of soybean
futures. iii) Differing from the previous work of finan-
cial market forecasting (Hsu 2013; Shynkevich 2017;
Lei 2018; Das and Mishra 2019), we try to establish
an ANN based on chaos to extract and mine the hidden
pattern in the original data of soybean futures in or-
der to make accurate predictions. The latter is very im-
portant in modern trading practice. Our results from
the perspective of nonlinear dynamics are expected
to show that whether soybean futures are predictable
in the short-term or not depends on the multifractal
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and chaotic nature of the measurements, and our re-
sults introducing ANNs base on chaos will prove the
consistency and accuracy of their predictive ability.

METHODOLOGY

Multifractal detrended fluctuation analysis (MF-
-DFA) and generalized Hurst exponent. The mul-
tifractal detrended fluctuation analysis (MF-DFA)
is an effective tool for detecting multifractal behavior.
This method is proposed by Kantelhardt et al. (2002).
The ME-DFA procedure is conducted as follows:

Suppose {xi}j\il be a time series of length N, where:
x, — the i value in the time series; i — the ordering
in the time series; N — length of the time series.

Step 1: Divide the profile y(k) into

N
N,=int (—j non-overlapping segments, and obtain the
s

local trend for each segment, where:

y(k)= Z{xz _%i’%};

k
i=1

s — the number in each segment; k-1, 2, ..., N.

Step 2: Construct F*(s,v) and calculate the g or-
der fluctuation function for the overall segments,
as in Equation (1).

The generalized Hurst exponent H(g) is defined
by F, (s)~ s"(9), The Hurst exponent defines the frac-
tal structure of the time series: by how fast F q(s) oflocal
fluctuations grows with increasing scale s. When the
series is multifractal, a significant dependence of H(qg)
on g should be observed. If the series is monofractal,
H(g) should be equal regardless of different g values.

When the ¢ is equal to 2, the value of H(2) is the
classic Hurst exponent (HE). If HE > 0.5, it indicates
that the trend change is persistent (long-range depend-
ence). This also means that we can make predictions

SR
=

E, (s)= {ﬁzpﬂ (s,v)} }

where:

S

F?(s,v)= =
1
i-1

—

IS D570} forv=1,., N,

https://doi.org/10.17221/480/2020-AGRICECON

about future prices based on past price information;
if it is antipersistent, HE < 0.5; and HE = 0.5 for the
random walk process.

AH = H(q,,,) — H(q,,,,) means the multifractal de-
gree of the market. When the value of AH is very high,
it indicates that the time series will have a big rise and
fall, while when the value of AH is very small, it shows
that the time series has little fluctuation and is rela-
tively stable.

Determining chaos by largest Lyapunov exponent
(LLE). Chaos is determined by largest Lyapunov expo-
nent (LLE). The LLE's specific algorithm by Wolf et al.
(1985) is as follows:

Step 1: Let {xl.: i=12,.., N} be a time series
of length N. By using phase space reconstruction tech-
nology, a new sequence of m-dimensional phase space is:

Xi={xi,xiﬂ,...,xH(m_l)T} (2)

where: m — the embedding dimension; T — the delay
time.

Step 2: With the initial phase point X, as the base
point, in the rest of the phase point set {X}, find the
nearest neighbor point X/ of X, as the endpoint and
form the initial vector, denoted as:

L(to):mjin“Xl—XjH 3)
where ¢, — the initial time.
Step 3: Calculate the linear exponential growth rate

of the system:

1, L(t

\= L L) (4)
ko L(t)

where: A, — linear exponential growth rate of the system;

L(¢,) - the distance when ¢, = £, + k; k — the increment

of time; t, — time.

’

_Z{ [N—(V—NS)sH]_y/V\(i)}Z, forv=N,+1,...,2N,
S

¥, (l) — the n-order fitting polynomial in segment v; v -1, 2, ..., N,.
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Step 4: Continue like this until the end of the time
series, and then take the average growth rate of each
exponent as the estimate of the LLE.

In the regard, LLE > 0 represents time series with
chaotic dynamics. On the contrary, LLE < 0 indicates
that time series does not have chaotic dynamics char-
acteristics.

DATA DESCRIPTION AND EMPIRICAL
RESULTS

Data. In this paper, we use the CBOT's daily price
of soybean futures from January 3, 2000 to Decem-
ber 20, 2019, encompassing 5 025 points of data.
The data source is Wind — a commercial database widely
used in China (Wind 2020). For convenience, we denote
the time sequence for each data set as ¢ and the corre-
sponding price sequence as p(t), where t = 1, 2, ..., 5025.
We divide the whole sample (5 025 data points in total)
into two samples, one called training sub-sample data
(the first 5 015 data points) and the other called the test-
ing sub-sample data (the last 10 data points) to com-
pare the predicted results.

Figure 1 exhibits the whole soybean futures price
time series ranging from January 3, 2000 to Decem-
ber 20, 2019. The x-coordinate represents time and the
y-coordinate represents the price of soybean futures,
and the unit is cents per bushel. Figure 1 shows two ma-
jor upward trends: from January 2000 to March 2004,
and from February 2005 to February 2008. It also ex-

perienced a big bear market: it was in decline from
March 2012 until November 2019. At the same time,
the price changes from around USD 500 cents per
bushel to around USD 1 700 cents per bushel, indicat-
ing that the price fluctuates greatly.

The multifractal and chaotic nature of the soy-
bean futures. In the MF-DFA model, in order to avoid
overfitting, we choose the fitting order # as 1, g-orders
between —5 and 5 and set the scale s as 10 (Lashermes
et al. 2004; Thlen 2012). The generalized Hurst expo-
nent of the soybean futures price is shown in Figure 2.
When g = -5, H(g) is 0.9, higher than 0.5, and decreas-
es smoothly with a rising g value between -5 and 5.
It shows that the value of H(g) is apparently depend-
ent on g values. The decreasing H(g) indicates that
the price series of the soybean futures have significant
multifractal properties.

At the same time, MF-DFA method was applied
to the whole sample and the training sub-sample to ob-
tain Table 1. It can be seen from Table 1 that HE values
of the two samples are equal to 0.51 and 0.52, respec-
tively [H(2) value], indicating that the time series of soy-
bean futures prices of the two samples have long-range
memory. At the same time, as the incidental conclusion
of MF-DFA method, AH value is equal to 0.85 and 0.86,
respectively, indicating that the multifractal degree
of the market is very high, which also means that the
soybean futures price market will have a big rise and fall.

In order to identify the chaos of the whole sample
soybean futures price time series, it is necessary to re-
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Figure 1. The historical daily price of the whole sample (from January 3, 2000 to December 20, 2019)

Source: Wind (2020)
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Figure 2. The generalized Hurst exponent of the whole
sample

H(q) — the generalized Hurst exponent; g — the order of fluc-
tuation function

Source: Calculations by the authors based on Wind (2020)

Table 1. Generalized Hurst exponent H(g) and their range
over g € [-5,5]

Order H(q) for H(g) for
q the whole sample the training sub-sample
-5 0.90 0.91
-4 0.85 0.82
-3 0.79 0.74
-2 0.72 0.69
-1 0.67 0.67

0 0.62 0.61

1 0.57 0.56

2 0.51 0.52

3 0.34 0.35

4 0.17 0.19

5 0.04 0.05
AH 0.85 0.86

H(qg) — the generalized Hurst exponent; g — the order of fluc-
tuation function

AH = H(q,;,) — H(q,y); the value of H(2) is the classic Hurst
exponent (HE)

Source: Calculations by the authors based on Wind (2020)

construct the phase space, which needs to determine
two parameters: embedding dimension m and delay
time t. First, we use the mutual information function
method (Fraser and Swinney 1986) to get the delay
time 1 = 3, and use the Gao method (Gao and Zheng
1993) to determine the embedding dimension m = 3.
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According to Wolf algorithm, largest Lyapunov expo-
nent LLE = 0.0378.

Estimates of LLE and MF-DFA-based HE for soy-
bean futures whole sample and training sub-samples
are given in Table 2.

As illustrated in Table 2, the LLEs associated with
the whole sample and training sub-sample are positive.
Therefore, the soybean futures price shows chaotic dy-
namics in both the whole sample and the training sub-
-sample, indicating that the characteristics of soybean
futures price in different time stages show a seemingly
random behavior, but are driven by chaotic behavior.
In addition, the estimated value of soybean futures
HEs greater than 0.5 shows that they have long-range
dependence characteristics, suggesting that the price
will not follow the random walk, but will show a per-
sistent dynamic. It also shows that soybean futures
prices can be predicted based on past historical price.

In general, the results of the study of chaos in the
form of intrinsic multifractal characteristic provide
strong evidence for the short-term predictability
of price dynamics, just as in the case of chaotic sys-
tems. In other words, a chaotic neural network nonlin-
ear pattern recognition system can effectively model
and predict.

Table 2. Estimated HE and LLE values

Whole sample Training sub-sample
Panel A
Fitting order » 1 1
tl':liizfclil(?r?:grder q [=5,5] (=551
Scale s 10 10
HE 0.51 0.52
Panel B
Embedding
dimension m 3 2
Delay time 1 3 3
LLE 0.0378 0.0382

HE —the Hurst exponent; LLE — the largest Lyapunov
exponent

The whole sample range from January 3, 2000 to Decem-
ber 20, 2019, including 5 025 points of data; while the train-
ing sub-sample is from January 3, 2000 to December 6, 2019,
containing 5 015 points of data; due to the small amount
of test sample data, there are only 10 points of data, so the
HE value and LLE value of testing sub-sample are not esti-
mated; in order to get the value of HEs and LLEs, it is neces-
sary to give values or intervals for three parameters (, g,
and s), and the two parameters (m, 1), respectively

Source: Calculations by the authors based on Wind (2020)
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PREDICTION AND COMPARISON

In the simulation experiment, we use training sub-
-sample data (5 015 points of data in total) for learning,
and testing sub-sample data (10 points of data in total)
to compare the prediction results. The original testing
sub-samples and the predicted samples are x(n) and
x (n), respectively, and the experiment uses the absolute
error (AE) e(n) = x, (1) — x(n), the mean absolute error
(MAE) and the percentage error (Perr) as the evaluation
criteria of the prediction accuracy. The smaller MAE and
Perr values are, the more predictive effect of the model
is, where MAE and Perr, respectively, are defined as:

x(m) =, ()|

1 &
MAE =—Z
N n=1

Perr = Zp(x(n)—xp (n))2 Z_P:xz (n)

where: Np — the number of predicted samples.

The chaotic neural network (CANN) and artifi-
cial neural network (ANN) were used for prediction.
The CANN models contain the RBF-CHAOS model
and the BP-CHAOS model, while the ANN models
contain the RBF model and the BP model. The results
are shown in Figure 3. Observed (true) and forecasted
values from CANN and ANN are presented. From the
left, the top line is the hybrid back propagation neu-
ral network and chaos model (BP-CHAOQOS) prediction

data line; the second line is the observed (true) data
line; the third line is the the hybrid radial basis func-
tion neural network and chaos model (RBF-CHAQS)
prediction data line; the fourth line is the back propa-
gation neural network model (BP) prediction data line;
the bottom line is the radial basis function neural net-
work model (RBF) prediction data line [for details see
the electronic supplementary material (ESM); for ESM
see the electronic version].

This shows that all these four models can predict the
futures price of soybean, especially the short-term pre-
diction (within 5 days). When the predicted days are
longer than 5 days, the error will increase. In particu-
lar, The BP-CHAOS model works well in predicting the
first five days: compared with the true value, it is con-
sistent in the direction of price change and the value
is very close; whilst the RBF-CHAOS model can follow
true data on trends.

As shown in Figure 3, for the soybean futures price
time series, compared with the ANN topology, the
predicted value based on CANN follows the observed
value more closely.

Accordingly, the MAEs calculated by CANN are
no more than 20, while those of ANN are all over 20.
Meanwhile, the Perrs calculated by CANN do not ex-
ceed 0.06%, while those by ANN exceed 0.1% (Table 3).
Compared to ANN, MAE and Perr of CANN are sig-
nificantly reduced: the MAE value is reduced by 11.2%
at least, 58% at most, and will reach 60%; the Perr value
is reduced by 40% to 80%. In terms of specific mod-
els, RBF-CHAOS has the highest prediction accuracy

Figure 3. Prediction based on CANN
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and ANN models

ANN - artificial neural network;
BP — back propagation; CANN - chaotic
artificial neural network; RBF — radial
basis function; x(n) — the original price;
xp(n) — the predicted price

"True" stands for real data and, "RBF-
-CHAOS, BP-CHAOS, RBF and BP"
represent the data predicted by the cor-
e responding model; the CANN models
contain RBF-CHAOS model and BP-
L -CHAOS model, while the ANN models
contain RBF model and BP model [for
details on the four models see the elec-
1 tronic supplementary material (ESM); for
ESM see the electronic version]

Source: The true data is from the Wind
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Number of predictions (ten in all)
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database (Wind 2020), and the predicting
data is calculated by the authors based
on Wind (2020)

5024 5025
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MAE Perr
Model
USD cents per bushel Rank % Rank
RBF-CHAOS 10.62 1 0.03 1
CANN
BP-CHAOS 19.34 2 0.06 2
RBF 25.31 4 0.15 4
ANN
BP 21.78 3 0.10 3

In this paper, CANN contains two models, namely RBF-CHAOS and BP-CHAOS; meanwhile ANN contains RBF and
BP; the rule of ranking is: the smaller the MAE value and Perr value, the higher the corresponding model ordering is

ANN - artificial neural network; BP — back propagation; CANN - chaotic artificial neural network; MAE — mean absolute

error; Perr — percentage error; RBF — radial basis function
Source: Calculations by the authors based on Wind (2020)

for soybean futures. Thus, MAE and Perr scores con-
firmed that CANN was superior to ANN in predicting
future soybean futures prices. In general, compared
with the ANN structure, the CANN system can better
learn the chaotic and self-similar patterns of soybean
futures, and can better predict its future dynamics.
Thus, the effectiveness of CANN in modeling and fore-
casting chaotic financial data structure in soybean fu-
tures market is verified.

CONCLUSION AND ECONOMIC
IMPLICATIONS

In this paper, we firstly use MF-DFA and largest Lya-
punov exponent to check the multifractal, long-range
memory and chaos characteristics of the time series
of soybean futures prices from January 3, 2000 to De-
cember 20, 2019.

As H(gq) value will change with the change of g,
we know that this time series has multifractal char-
acteristics, and AH is much larger than 0, indicating
a high multifractal degree which means that the soy-
bean futures price will fluctuate greatly and it will
rise and fall sharply. At the same time, we found that
HE > 0.5, indicating that this time series has long-range
memory. At the same time, the value of LLE > 0 indi-
cates that this time series has chaotic characteristics,
so it also indicates that the price of soybean futures
seems to be random, but the generation mechanism
of soybean futures price is in fact deterministic.

The investigation of chaotic and multifractal dynam-
ics in nonlinear systems is of paramount importance
in terms of their predictability. An unstable or noisy
system (signal) may have limited short-term pre-
dictability, whilst multifractal and self similarity can
increase the possibility of accurate prediction of fu-
ture sequences of such signals. By studying the cha-
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otic characteristics of soybean futures, we evaluate
its predictability with sufficient historical data, and
contribute to the literature of econophysics. We com-
pare the prediction ability of CANN with that of ANN
in soybean futures market. Interestingly, the litera-
ture on this path that we explored is still very limited.
When we apply CANN and ANN to soybean futures,
we find that CANN is superior to ANN in term of the
mean absolute error (MAE) and the percentage error
(Perr). The reason is that CANN is obviously effective
in extracting hidden patterns from potential signals
and accurately modeling time series. In addition, be-
cause the ANN is based on the Gaussian kernel local
approximation of non-stationary signal, the ANN can-
not approximate the global model with chaotic charac-
teristics. In general, the CANN model is very effective
in predicting soybean futures. At the same time, it can
be found that RBF-CHAQOS model has the highest pre-
diction accuracy from MAE and Perr.

Finally, this paper also informs that, from a techni-
cal point of view, it is feasible to predict and analyze
the fluctuations in the soybean futures market, and this
feasibility makes market arbitrage possible. Arbitrage
opportunities can attract speculative capital, thereby
increasing risks in the soybean futures market. Gov-
ernment departments and investors can use predictive
models to design hedging strategies for the soybean
futures market and effectively manage risks in the soy-
bean futures market. At the same time, the government
departments can formulate corresponding agricultural
laws and policies to avoid the risks.
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