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Abstract: This paper describes a problem of optimal agricultural land treatment using aviation. The studied problem 
consists of  determining the  optimal routes for  a given set of  aircraft used for  chemical treatment of  arable agri-
cultural land divided into parcels. This NP (nondeterministic polynomial time) problem is represented on a graph 
and  a  mixed integer mathematical programming model of  the problem is formulated. This mathematical model 
is a specific variant of the multi-depot vehicle routing problem where a min-cost plan for the transportation of a ho-
mogeneous product (chemicals used for land treatment) from different supply locations (airfields) to different de-
mand locations (agricultural parcels) should be generated. Some specifics of the agricultural land chemical treatment 
are described in the paper and the following specific conditions are taken into consideration: each parcel is treated 
only by one way of treatment and one aircraft; for each aircraft its chemical and fuel reservoir capacities are sufficient 
to serve its route. The complexity of the problem and the impossibility to obtain exact solutions for larger dimensions 
of the problem led to the formulation of a special heuristics which is presented in this paper. Numerical experiments 
are successfully conducted for larger problem dimensions and results are presented.

Keywords: agriculture; combinatorial optimisation; mathematical model; multi-depot vehicle routing problem; op-
timisation; special heuristics

Supported

Application of operations research models and 
methods has become important in assisting farmers 
and extension specialists decide whether to intro-
duce alternative practices to make agriculture more 
sustainable (Hayashi 2000). Today, due to extensive 
use, quality of the arable land decreases and it is 
getting more and more polluted. The review of avail-
able literature proved that in the field of agriculture 
different operations research problems, location 
problems, problem of allocation and routing are 
being solved. Problems of determining the optimal 
routes for agricultural vehicles (including robots) 
on agricultural land are often solved, by genetic 
algorithms (Gracia et al. 2014; Mahmud et al. 2018; 
Mahmud et al. 2019), by modified Clark-Wright 

algorithm (Seyyedhasani and Dvorak 2017) or im-
plementing mix-opt metaheuristic operator (Conesa-
Munoz et al. 2016). There are a number of examples 
in the literature where various agricultural problems 
are solved by optimisation: allocation of agricultural 
land and water resources (Mosleh et al. 2017); deter-
mining the order in which automated vehicles visit 
plots (blocks) of agricultural land (Hameed et al. 
2013); fleet management of agricultural vehicles 
including resource allocation, scheduling, routing, 
real-time monitoring of vehicles and materials (So-
rensen and Bochtis 2010); determining the location 
for agricultural airfields (Andrić Gušavac et al. 2014). 
Problems related to the agricultural land, its quality 
or arrangement of plots, are also being solved. Author 
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in (Kung 2018) analyses how changes in the land 
fertility affect agricultural activities and bioenergy 
development, and authors in (Harasimowicz et al. 
2017) deal with optimisation of land consolidation.

Agriculturalists are the principal managers of global 
usable lands and will shape, perhaps irreversibly, 
the surface of the Earth in the coming decades (Ew-
ers et al. 2009). This will lead to the transformation 
of many landscapes from natural vegetation cover 
to agricultural land use, unless increases in crop 
yields reduce the need for new farmland. 

Pesticide application in agriculture refers to the prac-
tical way in which pesticides (e.g. herbicides or fun-
gicides) are delivered to their biological targets (e.g. 
crop or other plant) using agricultural vehicles or air-
planes. Authors in (Mghirbi et al. 2017) propose a 
decision tool for management of plant protection 
in agriculture in order to reduce the risk of pesticide 
toxicity. Adequate pesticide application technologies 
can improve efficiency of its use and protect public 
health and the environment. 

The objective of  this research is to determine 
the optimal routes for a given set of aircraft used 
for chemical treatment of arable agricultural land 
divided into parcels. In order to achieve this goal, 
the original mixed integer mathematical program-
ming model of the problem is formulated and solved. 
Some preliminary numerical experiments to obtain 
exact solutions are given, and due to the complexity 
of the problem, a special heuristics is formulated 
in order to solve larger dimensions of the problem. 
The contribution of this paper is to provide analytical 
approach to agricultural land treatment planning, 
by defining the specific characteristics of the observed 
problem, formulating optimisation model and solv-
ing it, all of which could assist the farmers in land 
treatment planning and decrease the costs of it.

MATERIALS AND METHODS

The paper focuses on the  specific agriculture 
problem – chemical soil treatment where an agri-
cultural land divided into parcels has to be treated 
with chemicals. In order to find an optimal treat-
ment of agricultural land using aviation we introduce 
a special variant of the multi-depot vehicle routing 
problem (VRP). VRP consists of finding an optimal set 
of routes for a fleet of vehicles which must serve a given 
set of customers and is frequently used for modelling 
and solving various agricultural problems. It has been 
over fifty years since Dantzig and Ramser (1959) 

introduced this problem. Some preliminary numeri-
cal experiments to obtain exact solutions are given, 
and due to the complexity of the problem, a special 
heuristics is formulated in order to solve larger di-
mensions of the problem. 

Description of optimal treatment 
of agricultural land using aviation

We will describe in more precise way the problem 
of an optimal treatment of agricultural land using 
aviation (OTALA problem): an agricultural land 
is divided into a given set of parcels which should 
be chemically treated by an agricultural aviation. 
Given are set of aircraft used to realise this treat-
ment and set of airfields that can be used for their 
take-offs and landings. A set of possible ways how 
to treat one parcel by the aircraft is defined for each 
parcel and each aircraft.

Problem OTALA is defined in the following way: 
for each aircraft we determine an airfield where 
it  starts and finishes its f light, and a route (se-
quence of parcels) which it should treat in such way 
that the total treatment cost is minimal and the fol-
lowing conditions are fulfilled:
–	 each parcel is treated only by one way of treatment 

and one aircraft;
–	 for each aircraft its chemical and fuel reservoir ca-

pacities are sufficient to serve its route and the flight 
between each two adjacent parcels in this route 
is technically possible.

In this paper, we consider the real life problem which 
has 245 parcels and 7 potential locations for the air-
fields. This problem is noticed in an agricultural com-
pany, and it has not been solved using mathematical 
methods.

One example of a land treatment using aviation with 
one airfield and two parcels is presented in Figure 1, 
where a way of treatment for each parcel is defined. 
The way of treatment for the succeeding parcel de-
pends on the way of treatment of the preceding parcel. 
In Figure 1, two ways of treatment (with three tracks 
each) for these two parcels are intuitively selected. 

In the problem which is considered in this paper, 
we will assume that, for each parcel and the aircraft 
which can treat the parcel, a set of possible ways 
of treatment is given in advance. 

The most frequently used treatment of a parcel 
is depictured in Figure 1, for such treatment makes 
the  least length in  f light when plane is turning, 
and thus the processing costs are lower.
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Based on Figure 1, we can notice two key points 
in the processing of the parcel – the point of entry 
of the aircraft and the point of its exit – when the en-
trance point is known, the exit point can be calculated 
based on the entry point and the possible number 
(odd or even) of tracks. The entry point and the exit 
point define one way of treatment for one parcel. 

Representation of OTALA problem on graph

Problem OTALA can be represented as an opti-
misation problem on an associated weighted graph 
in the following way.

Let us introduce the following notations: given are 
a set of parcels – P, a set of aircraft – A and a set of air-
fields – L. For each p P∈  and each a A∈  a set of ways 
V (p,a) to treat parcel p by aircraft a can be defined 
where V(p,a) can be ∅ .

The node-and-arc weighted graph now G = (N,E,D,B) 
is associated to the problem OTALA as follows.

Set of nodes ( ), ,
p P a A

N N L V p a
∈ ∈

= +∑∑ , is defined 
in the following way:
–	 each airfield l L∈  is represented by a node in G;
–	 for  each parcel p P∈  and each aircraft a A∈  

for which ( ),V p a ≠ ∅ , each ( ),v V p a∈  is repre-
sented as a node in G.

Set of arcs E is defined in the following way:
–	 for each airfield node l L∈  and each parcel p P∈  

and each aircraft a A∈  for which ( ),V p a ≠ ∅, there 
are arcs (l,v) and (v,l) for each node ( ),v V p a∈ ;

–	 for every two parcels 1 2,p p P∈  and each aircraft 
a A∈  for which ( )1 ,V p a ≠ ∅ and ( )2 ,V p a ≠ ∅, there 
is an arc (v1,v2) for every ( )1 1 ,v V p a∈  and  ( )2 2 ,v V p a∈  
such that flight of aircraft a from parcel p1 treated 

by way v1 to parcel p2 treated by way v2 is techni-
cally possible (exit point of the treatment from 
the preceding parcel is connectable to entry point 
of the treatment for the succeeding parcel).

Set of node weights { }, ,vD D d v N= ∈  is specified as:
–	 to each node \∈v N L, corresponding to parcel 

p P∈  and aircraft a A∈  (i.e. ( ),v V p a∈ ), a positive 
real weight dv is associated as the length of flight 
of aircraft a over the parcel p which is treated 
by way v (in units of length);

–	 to each node , 0vv L d∈ = .
Set of arc weights ( ){ }, , ,vwB B b v w E= ∈ , is specified as:

–	 to each arc ( ),v w E∈ , where v L∈  and ( ),w V p a∈ , 
a positive real weight bvw is associated as the length 
of flight (in length units) of aircraft a from airfield v 
to parcel p treated by way w;

–	 to each arc ( ),v w E∈ , where ( ),v V p a∈  and w L∈ , 
a positive real weight bvw is associated as the length 
of flight (in length units) of aircraft a from parcel p 
treated by way v to airfield w;

–	 to  each arc ( ),v w E∈ ,  where ( )1 ,v V p a∈  and 
( )2 ,w V p a∈ , a positive real weight bvw is associ-

ated as the length of flight of aircraft a from parcel p1 
treated by way v to parcel p2 treated by way w.

Now the problem OTALA can be reduced to the fol-
lowing multi-depot vehicle routing problem on graph G:
find a subset 'A  from set of aircraft A and family 

{ }',aF C a A A= ∈ ⊆  such that:
–	 Ca is a cycle in graph G containing only one airfield 

node from L;
–	 for each '

1 2,a a A∈  cycles 
1aC  and 

2aC  do not have 
a common parcel node from \N L;

–	 for each parcel p P∈  there is only one node from 
( ),a AV p a

∈
  which belongs to a cycle from family F;

–	 for each 'a A∈  the total amount (in volume units) 
of the chemicals demanded by all parcel nodes from 
cycle Ca does not exceed the chemical reservoir 
capacity of aircraft a;

–	 for each 'a A∈  the total length of cycle Ca (deter-
mined as a sum of weights of its nodes and arcs) 
demands the total fuel consumption (in volume 
units) which does not exceed the fuel reservoir 
capacity of aircraft a;

–	 the total cost of all cycles from family F (the total 
cost of airfield activation plus total cost of fuel 
consumption) is minimised.

Graph G, associated to the problem OTALA with 
one airfield, two parcels and two aircraft is partially 
represented in Figure 2. Nodes vij represent way 
of treatment i for parcel j by the corresponding air-
craft. Each non oriented edge represents two oriented 

Figure 1. Two parcels treated in one route

Source: authors’ composition

Parcel 1

Parcel 2

Airfield



572

Original Paper	 Agricultural Economics – Czech, 65, 2019 (12): 569–578

https://doi.org/10.17221/134/2019-AGRICECON

arcs, while arcs between airfield node and nodes 
of parcel 2 are omitted.

From this graph it can be seen that node v11 is not 
connected by any node of parcel 2, i.e. for aircraft 1 
there are no technically possible flights from par-
cel 1 treated by way 1 to parcel 2 for any way of its 
treatment. On the other hand, oriented arc (v41, v32) 
means that there is a technically possible flight of air-
craft 2 from parcel 1 treated by way 4 to parcel 2 
treated by way 3, but not vice versa. Non oriented 
edge { }41 42,v v  means that there are technically possible 
flights of aircraft 2 between parcel 1 treated by way 4 
and parcel 2 treated by way 4 in both directions.

Graph G can be defined in cooperation with experi-
enced pilots/experts who determine technically possible 
flights for each two parcels. This is the best way how 
to reduce the maximum number of arcs of graph G 
and to stay in accordance with the real problem.

Mixed integer programming model of OTALA 
problem

Starting from the graph representation of problem 
OTALA, this problem can be formulated as a mixed 
integer programming (MIP) model. The following 
additional notations are introduced to formalise 
the MIP model:
–	 ,lc l L∈ : fixed cost for activation of airfield l;
–	 s: fixed fuel costs per fuel unit;

–	 ,ag a A∈ : fuel consumption per length unit for air-
craft a; 

–	 ,aq a A∈ : fuel reservoir capacity for aircraft a;
–	 ,ph p P∈ : chemical demand for parcel p;
–	 ,ak a A∈ : chemical reservoir capacity for aircraft a.

Let us consider the following sets:
–	 set ( ) ,VA a a A∈ , as a set of all nodes from \N L 

corresponding to treatment ways of parcels which 
are realised by aircraft a, i.e. ( ) ( ),p PVA a V p a

∈
=  ;

–	 set ( ) ,VP p p P∈ , as a set of all nodes from \N L 
corresponding to treatment ways of parcel p,
i.e. ( ) ( ),a AVP p V p a

∈
=  .

MIP model uses the following binary variables:
–	 ,ly l L∈ : 1 if and only if airfield node  l belongs 

to a cycle from family F, i.e. node l is activated;
–	 , ,laf l L a A∈ ∈ : 1 if and only if aircraft a belongs 

to subset 'A A⊆  and the corresponding cycle Ca 
from family F contains airfield node l;

–	 , ,vwx v w N∈ : 1 if and only if arc  (v,w) belongs 
to a cycle from family F.

MIP model uses continuous variables:
–	 , ,apu a A p P∈ ∈ : for  'a A∈  it represents the total 

chemical demand of nodes in cycle Ca, from air-
field node to node corresponding to parcel p, if it 
exists. Otherwise, uap = 0.

Now the following MIP model of the problem can 
be defined:

 
 
 

(min) l l a vw w vw
l L a A v VA a L

w VA a L

c y s g b d x
  



 

 
 
  
 

  



	 (1)

subject to:

   : , : ,

,  for each \vw wv
v v w E v w v E

x x w N L
 

   	 (2)

,  for each la l
a A

f A y l L


  	 (3)

,  1 for each la
l L

f a A


  	 (4)

 
,    for each andlv la

v VA a

a Ax f l L


  	 (5)

 
,    for each andvl la

v VA a

a Ax f l L


  	 (6)

 
 

: ,

,  1 for each vw
v v w E
w VP p

x p P




  	 (7)

Figure 2. Graph representation of the problem (with one 
airfield)

nodes vij represent way of treatment i for parcel j by the cor-
responding aircraft

Source: authors’ composition
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 
 
 

,
,
,

   ,  for , andap ar a vw a r
v w E

v V p a
w V r a

u u k x k h p r P a A





     

     such that , , ,V p a V r a    	 (8)

 
 
 

,  for each a
vw w vw

av VA a L
w VA a L

qb d x a Ag
 
 

   	 (9)

     0,1 , 0,1 , 0,1 , 0vw la l apx f y u    	 (10)

The objective Function (1) represents total costs of all 
cycles considered as a sum of the total cost of airfield 
activation and the total cost of fuel consumption and 
it has to be minimised. Minimising the fuel consumption 
of vehicles can influence to direct reduction in the op-
erating cost of their routing (Gaur et al. 2013). Con-
straints (2) ensure that for each node \w N L∈  number 
of arcs which enter node w is equal to number of arcs 
which exit node w. Constraints (3) enable that, for each 
airfield node l L∈ , if there is an aircraft from 'A  with 
the corresponding cycle containing node l then this node 
is activated. Constraints that, for each aircraft a A∈ , if 

'a A∈  then the corresponding cycle Ca contains only 
one airfield node, are modelled by (4). If an aircraft a 
belongs to  'A  and the corresponding cycle Ca contains 
an airfield node l L∈ , then Constraints (5) ensure in Ca 
the existence of an arc which exit node l, while Con-
straints (6) ensure in Ca the existence of an arc which 
enter node l. Constraints (7) enable that, for each parcel 
p P∈  there is only one arc which belongs to a cycle from 
family F and enter a node corresponding to parcel p, 
i.e. a node from set VP(p). Constraints (8) represent 
the well-known MTZ (Miller–Tucker–Zemlin) sub tour 
elimination constrains (Desrochers and Laporte 1991) 
adapted to our problem. The additional real variables ui 
are used to give an ordering to all nodes excluding 
the depot to prevent the formation of illegal sub tours 
(Sawik 2016). Authors in (Kulkarni and Bhave 1985) 
adapted the original MTZ sub tour elimination con-
strains to the CVRP where it is assumed that the demand 
at each node is either less than or at the most equal 

to the capacity of each aircraft. We used these adapted 
MTZ constrains in our problem. Constraints (9) ensure 
that for each aircraft 'a A∈  the total weight of the cor-
responding cycle Ca, equal to its total length, does not 
exceed the maximal possible length of flight for aircraft  
determined as qa/ga.

Let us mention that if, for an l L∈  and all a A∈ , fla = 0, 
then this situation should imply yl = 0, what is not mod-
elled as a constrain in Model (1–10). Namely, according 
to (3), in this situation yl can be 0 or 1. As the objective 
Function (1) is minimised, then in an optimal solution 
with such a situation yl will be always equal to 0.

The MIP Model (1–10) may not have a feasible solu-
tion, due to its sufficient number of available aircraft 
with low chemical or/and fuel reservoir capacities, 
which can cause that Constrains (8) or/and (9) can-
not be satisfied.

Preliminary numerical results

In order to investigate a power of defined MIP model, 
the data base is prepared, and the largest dimen-
sions of the data are 245 parcels, four treatment ways 
for each parcel and seven potential locations for air-
crafts. In order to solve the model, one of the non-
commercial open-source linear programming solvers, 
called GLPK (GNU Linear Programming Kit) is ap-
plied. Performances of the computers we used are 
given in Table 1. Some numerical experiments with 
11 OTALA instances and its characteristics of smaller 
dimensions from the data base have been performed 
and they are summarised in Table 2. The associated 
graphs in all instances contain the maximal num-
ber of technically possible arcs, except in instance 9 
(only 60.2% of arcs).

It can be seen that the execution time required to find 
an optimal solution increases with dimensions of in-
stances. Moreover, for instances 10 and 11 of larger 
dimensions, the solver does not succeed to find any 
optimal solution. Although instances 9 and 11 have 
the same characteristics (excepting the number of arcs), 
the solver succeeds to solve to the optimality only 

Table 1. Performance of the computers used for experiments

Performance Computer 1 Computer 2
Model Toshiba Satellite L855 desktop computer
Processor Intel (R) Core (TM)i3-3120m CPU 2.50 GHz Intel (R) Core (TM) i5-3350P CPU 3.10 GHz 
RAM 4.00 GB (3.89 useful) 8.00 GB

Source: authors
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instance 9, due to smaller number of arcs in the as-
sociated graph.

The preliminary numerical results show that for 
larger dimensions the solver does not guarantee to find 
an optimal solution of MIP model. As such difficulties 
could be expected in the case of real life instances, 
it is reasonable to develop a heuristic approach to solv-
ing OTALA problem. 

Special heuristic for solving OTALA problem

Respecting characteristics and specificities of prob-
lem OTALA we develop here a special heuristic 
algorithm for its solving which represents a modi-
fication of the well-known Clark-Wright algorithm 
(Clark and Wright 1964). 

In order to formalise the heuristics, we use the no-
tations previously given, and introduce additional 
notations: all possible elementary routes – S; set Pl 
of all parcels assigned to l, l L∈ ; set Al of all possi-
ble aircraft corresponding to parcels from Pl, l L∈ ; 
set '

lA A⊆  – treating set of parcels '

lP P⊆ , l L∈ ; 
Pa – routes for aircraft a from set '

lA A⊆  treating 
set of parcels '

lP P⊆ .
The pseudo-code of the heuristic:

Input (P, A, L, graph G)
(1)	for sets of parcels P, aircraft A and airfields L form 

all possible elementary routes S and calculate 
their costs;

While P ≠ ∅  and A ≠ ∅  and L ≠ ∅  do

(2)	assign parcels from P to airfields from L;
(3)	choose airfield l L∈  with the maximal number 

of assigned parcels;
(4)	find set Pl of all parcels assigned to l and set Al 

of all possible aircraft corresponding to parcels 
from Pl;

(5)	find subset Sl of set S containing all elementary 
routes of  the form l – v – l, where the parcel 
of node v belongs to Pl;

(6)	for each possible pair of nodes of elementary routes 
from Sl calculate the “saving” amount. Sort all “sav-
ings” to a list according to non-increasing order;

(7)	passing through the whole list of savings generate 
routes Pa for aircraft a from set '

lA A⊆  treating 
set of parcels '

lP P⊆ ;
(8)	update sets P, A, L and S: '\P P P= , '\A A A= , 

{ }\L L l= , \ .lS S S=
End

Output set of routes { }aP .
Here we will give more details of  some steps 

of the pseudo code.
In step 1 for each airfield l L∈ , each parcel p P∈  , 

each aircraft a A∈ , where ( ), 0V p a ≠ , and each 
( ),v V p a∈ , the algorithm forms the so called el-

ementary route as the cycle  l – v – l. This route 
is possible only if the chemicals demanded by parcel 
node v does not exceed the chemical reservoir capac-
ity of aircraft a, and if the total length of the route 
demands the fuel amount which does not exceed 
the furl reservoir capacity of this aircraft.

Table 2. Problem instances and solver times

Problem 
instance #

Properties (number) Solver execution time

parcels treatment ways aircraft airfields binary decision 
variables GLPK Integer Optimiser, v4.52

1 2 4 2 2 258 < 1 s
2 3 4 2 2 282 < 1 s
3 3 4 4 2 562 2.122 s
4 4 4 4 2 994 33.22 s
5 5 4 4 2 1 554 420 s
6 6 3 4 1 1 189 8 951.8 s
7 6 3 3 2 1 004 4 025.9 s
8 6 3 4 2 1 338 15 290.246 s
9 6 4 4 2 1 354 1 407.032 s
10 6 4 4 1 2 045 not solved, > 10 h, out of memory
11 6 4 4 2 2 242 not solved, > 19 h, out of memory

GLPK – GNU Linear Programming Kit

Source: authors’ own calculations
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More formally, in order to be possible route l – v – l 
should satisfy: ( )lv vl v a ab b d g q+ + ≤  and p ah k≤ .

The cost of elementary route l v l− −  is equal to 
( )lv vl v as b b d g+ + .
Step 2 assigns each parcel p P∈  to an airfield l L∈  

in the following way: for each airfield l L∈  and each 
aircraft for which ( ), 0V p a ≠ , consider costs of all 
elementary routes l v l− −  for  ( ),v V p a∈ , and choose 
among them the minimal cost. Then, among all in such 
a way chosen minimal costs find the maximal value 
m(l, p) over all aircraft. Now, parcel p is assigned 
to airfield *l L∈

 
for which value m(l, p) is minimised.

More precisely, in step 6 for each pair of nodes (p, q) 
which satisfy conditions:
–	 elementary routes l p l− −  and l q l− −  belong 

to set Sl;
–	 parcels corresponding to nodes p and q are differ-

ent, but the corresponding aircraft is the same;
–	 there exists arc  (p, q) in  the graph associated 

to problem OTALA, the “saving” amount is calcu-
lated as b c d+ − , where b is the cost of the flight 
from p to  the current airfield  l ,  c is the  cost 
of the flight from l to q, and d is the cost of the 
flight from p to q.

If 0b c d+ − > , then pair (p, q) enters a list together 
with the corresponding “saving” amount.

In step 7 the algorithm passed through the whole 
sorted list of savings treating the current pair of nodes 
from the list in the following way: if (p, q) is the cur-
rently considered pair of nodes from the list, with 
aircraft a as the corresponding aircraft, then two 
cases are possible:

Case 1: If a route for aircraft a has not been formed 
yet, then investigate whether this aircraft has the suf-
ficient fuel and chemical reservoir capacities to realise 
the route obtained by merging elementary routes 
l p l− −  and l q l− − . If it has, merge these elementary 
routes to the route which now represents the initial 
route Pa for aircraft a. Then, eliminate from the list 
each following pair of nodes such that their aircraft 
is different then a and at least one node from the pair 
has the same parcel as node p or node q.

Case 2: Let there exist a previously formed current 
route Pa for aircraft a, and let pair (p, q) be in the 
form ( ),v first  or ( ),last v , where there is no node in Pa 
with the same parcel as node v, first is the first node 
after node l and last is the last node before node l 
in route Pa. Investigate whether aircraft a can realise 
(with respect to fuel and chemical reservoir capaci-
ties) the route obtained by merging elementary route 
l v l− −  with route Pa (via node first or node last). 

If it can, Pa and l v l− −  are merged to the route which 
now represents a new route Pa. Then, as in Case 1, 
eliminate from the list each following pair of nodes 
such that their aircraft is nor aircraft a and at least 
one node from the pair has the same parcel as node p 
or node q.

After passing through the whole list of savings gen-
erated routes Pa represent the final routes for aircraft 
a from a subset of aircraft 'A A⊆ , which treat a subset 
of parcels 'P P⊆ .

The algorithm steps when at least one of updated 
sets P, A and L is empty, and the output is the fam-
ily { }aP  of all final routes generated during the al-
gorithm’s execution.

When set P of non-treated parcels is empty, the fam-
ily { }aP  represents a feasible solution of problem 
OTALA. If set A of all unused aircraft is empty, 
or the corresponding routes are formed for all air-
fields (i.e. L = ∅), it can happen that the family { }aP  
does not cover all parcels.

Numerical experiments with the heuristic

In order to investigate the efficiency of the proposed 
special heuristic algorithm, we applied this algorithm 
to 14 OTALA instances from our data base and the nu-
merical results are presented in Table 3. We used Jet-
Brains Platform (JetBrains 2018) (this platform is used 
in computer programming specifically for the Python 
language) and coded in Python language (version 3.5). 
Computer 2 (performances given in Table 1) is used 
for heuristic experiments. The characteristics of the in-
stances are displayed in the first five columns of this 
table. In experiments we used 20 aircraft with capacity 
of 250, 10 with capacity of 200 and 10 with capacity 
of 150. Also, for each instance GLPK Integer Opti-
miser was applied to the corresponding MIP model and 
it found optimal solution always when it was possible.

In Table 3, columns 6 and 7 contain the execution 
times for GLPK, in the case it succeeded to find 
the optimal solution, and for the heuristic algorithm. 
It can be seen that GLPK solved only the first five 
instances within exponentially increased execution 
time, while the heuristic solved all instances within 
no more than 30 minutes for large dimensional prob-
lems, such as instances 11–14.

Columns 8–9 contain the optimal objective func-
tion value (if it was found) and the approximate 
objective function value obtained by the heuristic. 
We can measure the quality of the heuristic’s solu-
tion using the following formula:



576

Original Paper	 Agricultural Economics – Czech, 65, 2019 (12): 569–578

https://doi.org/10.17221/134/2019-AGRICECON
Ta

bl
e 

3.
 E

xe
cu

tio
n 

tim
e 

– 
so

lv
er

 v
er

su
s h

eu
ri

st
ic

s

Pr
ob

le
m

 #
Pr

ob
le

m
 p

ro
pe

rt
ie

s (
nu

m
be

r)
Ex

ec
ut

io
n 

tim
e

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

pa
rc

el
s

w
ay

s 
of

 tr
ea

tm
en

t
ai

rc
ra

ft
s

ai
rfi

el
ds

G
LP

K
 In

te
ge

r 
O

pt
im

is
er

, v
4.

52
sp

ec
ia

l 
he

ur
is

tic
s

G
LP

K
 In

te
ge

r 
O

pt
im

is
er

, v
4.

52
sp

ec
ia

l h
eu

ri
st

ic
s

di
st

an
ce

 fr
om

 
op

tim
al

 so
lu

tio
n 

(%
)

1
2

4
4

1
< 

1 
s

< 
1 

s
31

2.
1

31
2.

1
0

2
3

4
4

1
1 

s
< 

1 
s

38
9.

7
38

9.
7

0
3

4
4

4
1

33
 s

< 
1 

s
49

7.
0

50
2.

0
1.

01
4

5
4

4
1

1 
30

0 
s

< 
1 

s
64

2.
7

64
8.

1
0.

84
5

6
3

3
2

9 
10

0 
s

< 
1 

s
84

9.
2

1 
01

1.
5

19
.1

1

6
7

3
4

1
no

t s
ol

ve
d 

(o
ut

 o
f m

em
or

y)
< 

1 
s

/
1 

36
6.

3
no

t a
pp

lic
ab

le

7
10

4
4

1
no

t s
ol

ve
d 

(o
ut

 o
f m

em
or

y)
< 

1 
s

/
1 

32
4.

0
no

t a
pp

lic
ab

le

8
50

4
10

2
no

t s
ol

ve
d

< 
5 

s
/

2 
14

6.
5

no
t a

pp
lic

ab
le

9
10

0
4

10
2

no
t s

ol
ve

d
40

 s
/

8 
01

6.
07

no
t a

pp
lic

ab
le

10
10

0
4

20
2

no
t s

ol
ve

d
80

 s
/

17
 0

80
.8

no
t a

pp
lic

ab
le

11
15

0
4

35
2

no
t s

ol
ve

d
15

 m
in

/
25

 9
39

.8
no

t a
pp

lic
ab

le
12

19
0

4
30

1
no

t s
ol

ve
d

23
 m

in
/

33
 8

27
.9

no
t a

pp
lic

ab
le

13
19

8
4

40
1

no
t s

ol
ve

d
25

 m
in

/
37

 4
16

.7
no

t a
pp

lic
ab

le
14

24
5

4
40

3
no

t s
ol

ve
d

30
 m

in
/

41
 0

95
.0

no
t a

pp
lic

ab
le

G
LP

K
 –

 G
N

U
 L

in
ea

r P
ro

gr
am

m
in

g 
K

it;
 sy

m
bo

l /
 in

di
ca

te
s t

ha
t t

he
 o

bj
ec

tiv
e 

fu
nc

tio
n 

va
lu

e 
is

 n
ot

 k
no

w
n 

be
ca

us
e 

th
e 

pr
ob

le
m

 is
 n

ot
 so

lv
ed

So
ur

ce
: a

ut
ho

rs
’ o

w
n 

ca
lc

ul
at

io
ns



577

Agricultural Economics – Czech, 65, 2019 (12): 569–578	 Original Paper

https://doi.org/10.17221/134/2019-AGRICECON

100,h opt

opt

f f

f


 	 (11)

where:  fh – the objective function value obtained by heu-
ristic, and fopt – the optimal objective function value.
The last column in Table 3 contains the distances 
from the optimal solution, defined by (11), for in-
stances 1–5. For the first two instances the heuristic 
reaches the optimal solution, while in other cases 
the distance is smaller than 20%.

The heuristic can obtain a solution which is not 
feasible, where some parcels are untreated. This 
situation can be overcome in reality, by increasing 
the number of aircraft or number of airfields.

CONCLUSION

This paper examines a specific problem of perform-
ing one operation on a parcelled agricultural land, 
which should be treated with the use of aviation. 
The studied problem consists of determining the op-
timal routes and it belongs to the class of NP-hard 
combinatorial optimisation problems and represents 
a variation of multi-depot vehicle routing problem. 

The main results of the study are:
–	  new approach to the problem of optimal treatment 

of agricultural land using aviation is presented;
–	 the problem is explained in detail and presented 

on a graph;
–	 MIP model – a specific variant of multi-depot 

vehicle routing problem is formulated;
–	 although the exact solutions can be obtained only 

for smaller dimensions of the problem, the heu-
ristic approach proved to be the only reason-
able way to solve the problem instances of larger 
dimensions (the distance from optimal solution 
no larger than 20%);

– the numerical results have shown that the pro-
posed model and approach can support farmers 
in selecting and performing land treatments.

The described approach to modelling and solv-
ing of a complex agricultural problem, considered 
in this paper, can provide a basis for some possible 
applications to other problems of the similar nature, 
as fire extinction in forestry and mosquito spraying. 
Unmanned aerial vehicles (UAV) are very popular 
for various applications in precision agriculture, 
so the modelling of the presented multi-depot vehicle 
routing problem, with some modifications, could 
be applied for solving UAV problems.
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