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The World Development Report estimated an in-
crease in cereals and meat production by 50 and 85% 
in 30 years (2000–2030) in order to meet the world 
demand (World Bank 2008). Intensive farming prac-
tices have been largely put into practice during recent 
years by using greenhouses and poly-tunnels, for ex-
ample, as a response to the increasing demand for fresh 
goods by the developed countries (Romero-Gámez 
et al. 2012). The demand for the bio-fuels and biomass 
through processing agriculture goods has been increas-
ing as well, and therefore several thousand million 
hectares of arable land might be needed, according 
to Bindraban et al. (2009). The increasing agricultural 
production augmented the energy consumption and 
the usage of non-renewable products as nitrogen 
and phosphorus, as well as the pesticides, according 
to Nemecek et al. (2011), raising several environmental 
problems such as loss of biodiversity, deterioration 
of the land and pollution of the ecosystem.

Given the heterogeneity of the levels of development 
of European agricultural regions and the existence 
of gaps in productivity, there are relevant reasons 
leading to the analysis and evaluation of economic-
environmental efficiency (eco-efficiency) in this sector. 
The Common Agricultural Policy (CAP), particularly 
with the proposed schedule for 2014–2020, tries 
to establish a series of recommendations to ensure 
the environmental conservation and whose incidence 
optimise the efficiency of the inputs used in the pro-
cess of agricultural production and livestock.

The agriculture eco-efficiency can be seen, as de-
fined by Schmidheiny and Zorraquin (1996), by the 
gross value added (GVA) by the greenhouse gases 
(GHG) emissions ratio (usually interpreted by the 
proportionality between agricultural production 
to gases emissions); or, according to Huppes and 
Ishikawa (2005), eco-efficiency is the ratio of value 
created per one unit of environmental impact.
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In the analysed agricultural sector literature, evaluat-
ing the efficiency and assessment of the environmental 
consequences of the production process are found 
to be an important basis for the decision-making. 
Regarding what concerns the efficiency in agricul-
tural production, the empirical studies are usually 
performed using the data envelopment analysis (DEA) 
or the stochastic frontier analysis (SFA), which identify 
the material balance as key drivers for different levels 
and variations in scores that rank the agricultural 
systems on their level of eco-efficiency.

Although not new, the methodology used in this 
work has not been applied at the sectoral level 
or in particular to the agriculture sector. A maximum 
entropy approach, which combines information from 
the DEA and the structure of composed error from 
the SFA without requiring distributional assumptions, 
is used to estimate the stochastic frontier model with 
a translog specification (Coelli et al. 2005; Rezek 
et al. 2011). The methodology was applied with the 
goal of estimating the agricultural eco-efficiency 
at the country level. The years of 2005 and 2010 
will be considered, which correspond to the 1st year 
of commitment to the Kyoto Protocol and the most 
recent year with information concerning all the vari-
ables in the study. This last year also allows us to see 
if some changes occurred after the agreement.

In our model, the agriculture GVA is considered 
as the desirable output and the GHG emissions from 
agriculture as the undesirable output. We use the ratio 
between GVA and GHG emissions as the definition 

of the eco-efficiency. Nutrients, energy (lubricants 
consumption), land, capital and labour are regarded 
as inputs. The GVA by GHG emissions ratio is max-
imised given the values of the other five variables. 
Eco-efficiency will be greater when the emissions 
decrease and the GVA is the same when agricultural 
production is greater for the same amount of emis-
sions, or simultaneously when agricultural produc-
tion increases and the GHG emissions shrink. The 
previous analyses show that the productivity of ag-
riculture in Europe relies on the intensity of energy, 
capital, labour and land. Different improvements 
in labour productivity, land intensity and energy 
efficiency can effectively enhance the technical and 
technological efficiency. However, capital deepening 
has a mitigating effect on the efficiency mentioned. 
The Kyoto Protocol commitment implies that the 
technological change of the European’s agricultural 
production biases energy use and capital saving, 
causing a high-energy demand, particularly in the 
development of the agricultural sector.

We present figures showing the evolution between 
2005 and 2010 of the GVA/GHG ratio, as well as of the 
inputs considered in our study. Figures 1–2 show that 
some countries that stand out for the GVA/GHG ratio 
as Finland (+109%), Germany (+25%) and Portugal 
(+9%). Slovakia, Ireland, the Czech Republic and 
Denmark have significant adverse developments for 
the production by the pollution emitted in agriculture. 
We also found in Figure 3 that countries with greater 
intensity in the use of nutrients are Bulgaria, Ireland 

Figure 1. Gross value added divided 
by greenhouse gases in 2005 and 2010 
for agriculture in European countries 
(in million EUR/gigagram CO2 eq.)

Source: own elaboration based on data 
from the Eurostat (more information 
in Data)
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and Slovakia, and those with bigger energy intensity 
are Ireland, Slovakia and the Czech Republic. The best-
performing countries, that is, with significant negative 
changes, are Finland, Greece and Malta for nutrients 
and Finland, Luxembourg, Germany and Portugal for 
energy. Joining these observations with the ones about 
the GVA/GHG ratio, we see that the intensity in the 
use of nutrients and energy can be strongly related 
to eco-efficiency of the sector.

If we look at the productivity of agricultural pro-
duction factors (capital, labour and land) in Figure 4, 
we can also establish some relationships with the 
economic and environmental efficiency. We have for 
example countries like Finland, Estonia and Latvia 
with a very satisfactory overall performance, while 
countries like Malta, Hungary or Ireland show a 
decrease in the factors productivity.

Following this preliminary analysis, it is clear that 
there are differentiating levels in the cross-country 
dispersion in agriculture in Europe on the relation-
ship between the measure of eco-efficiency and  
its determinants.

LITERATURE REVIEW: EFFICIENCY 
AGRICULTURAL STUDIES

Among the analysed agricultural sector literature, 
evaluating the efficiency and assessment of the envi-
ronmental consequences of the production process 
is found to be an important decision making basis.

The identification of natural resources as explana-
tory to justify the variability of levels of environmental 
efficiency in the context of agricultural production, 
justified the need for analytical frameworks, as sug-
gested for example in empirical studies by Battese 
and Coelli (1995), Reinhard et al. (2002), Greene 
(2005), Coelli et al. (2005), Simar and Wilson (2007), 
Lauwers (2009). All these studies covered the three 
most referenced models usually used to measure 
economic efficiency versus environmental efficiency, 
such as the environmental efficiency of production, 
the frontier of environmental efficiency and adjusted 
based on material balance models.

A particular innovation in the eco-efficiency analysis 
with adjusted production models is the use of a pro-

Figure 2. Variation of gross value added divided by greenhouse gases between 2005 and 2010 for agriculture in Eu-
ropean countries

Source: own elaboration based on data from the Eurostat (more information in Data)
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duction frontier to analyse the relationship between 
input(s) and output(s), under the assumption that pol-
lutant emissions are seen as undesirable inputs and/or 
outputs. This efficiency boundary is used for modelling 
the relationships between economic and ecological 
results to derive the environmental efficiency meas-
ures, such as supported by Callens and Tyteca (1999), 
Tyteca (1999), Kuosmanen and Kortelainen (2005), 
Kortelainen (2008), Lauwers (2009), Wursthorn et al. 
(2011), Picazo-Tadeo et al. (2011) and Picazo-Tadeo et al. 
(2012). To these authors, the measures of eco-efficiency 
are related to the economic value of outputs involved 
in production processes, under the assumption of the 
existence of environmental pressures.

There are several studies that use the DEA and SFA 
to identify different levels of eco-efficiency of agricultural 
systems, where the inputs are nutrients, nitrogen and 
phosphorus, since they have been found significant 
in explaining emissions, particularly for farms and 
livestock. As examples, we can point out the fol-
lowing studies: Callens and Tyteca (1999), Reinhard 
and Thijssen (2000), Reinhard et al. (2002), Van der 
Werf and Petit (2002), Pacini et al. (2003), Abay et al. 
(2004), Payraudeau and van der Werf (2005), Alene 

et al. (2006), Asmild and Hougaard (2006), Rao and 
Rogers (2006), Hoang and Coelli (2011) and Hoang 
and Alauddin (2012). Coelli et al. (2007) investigated 
the environmental performance of 117 pig farms 
in Belgium using a DEA non-parametric technical 
analysis. Lauwers (2009) and Van Meensel et al. (2010) 
used the DEA and SFA to recognise the existing trade-
off between environmental effectiveness and economic 
efficiency using the same data of Coelli et al. (2007).

Other authors advocate that agriculture eco-effi-
ciency should be evaluated considering the principle 
of the balance of materials, as the cost allocative ef-
ficiency, the fertiliser consumption intensity, the size 
of land and the share of owned land out of the total 
land. Some examples are the studies of Coelli et al. 
(2007), Van Passel and Van Huylenbroeck (2007), Bell 
and Morse (2008), Lauwers (2009), Barba-Gutiérrez 
et al. (2009), Van Meensel et al. (2010), Hoang and 
Coelli (2011), Picazo-Tadeo et al. (2011), Hoang 
and Alauddin (2012), Picazo-Tadeo et al. (2012), 
Khoshnevisan et al. (2013). Nguyen et al. (2012) in-
vestigated the environmental performance of 196 rice 
farms in South Korea based on the material balance 
theory, revealing a high variability in the coeffi-

Figure 3. Variation of nutrients intensity and energy intensity between 2005 and 2010 for agriculture in European countries

Source: own elaboration based on data from the Eurostat (more information in Data)
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cients associated with the explanatory drivers of 
eco-efficiency in all farms.

Hoang and Rao (2010) evaluated the efficiency 
of the agricultural sector of 29 OECD countries, de-
composing it into the technical efficiency and the 
cumulative exergy allocative efficiency, and defining 
new efficiency sustainable measures that ensure the 
capacity for the sustainability of crop and livestock 
production. In the reviewed studies, the environmen-
tal assessment was mainly focused on the efficient 
use of natural resources and nutrients, but we must 
consider, particularly in Africa, that there is a credible 
support that the systems of agricultural production 
are limited by the existing restriction of the low top-
soil fertility (due to scarcity of water and nutrients), 
as reported in the studies of Robertson et al. (2007), 
Bindraban et al. (2008), Twomlow et al. (2008) and 
Sanginga and Woomer (2009).

DATA AND METHODOLOGY

Data

In our model, we considered the GVA/GHG ratio 
for agriculture as the output and energy (lubricants), 
land (agricultural area), labour, capital and nutrients 

are considered as inputs by using a translog agricul-
tural production function.

GVA is the gross value added of agriculture at basic 
and constant prices, in millions of EUR, available 
on the Economic Accounts for Agriculture of the 
Eurostat. GHG emissions (CO2 eq.) in gigagrams were 
obtained from the FAOSTAT. Energy (lubricants) 
consumption in millions of EUR at constant prices was 
obtained from the Economic Accounts for Agriculture 
in the Eurostat. Agricultural area in % of the land 
area was obtained from the FAOSTAT. Agricultural 
labour in absolute figures (1 000 annual work units) 
was obtained from the Agricultural Labour Input 
Statistics, Eurostat. For the variable capital, we con-
sidered the gross fixed capital formation in millions 
of EUR at basic and constant prices available on the 
Economic Accounts for Agriculture of the Eurostat. 
Nutrients are the sum of nitrogen and phosphate fer-
tilizers in tonnes of nutrients per 1 000 ha obtained 
from the FAOSTAT.

We considered data for the two distinct years 2005 
and 2010 for the following European countries: Austria, 
Bulgaria, the Czech Republic, Denmark, Estonia, 
Finland, Germany, Greece, France, Hungary, Ireland, 
Italy, Latvia, Luxembourg, Malta, the Netherlands, 
Portugal, Romania, Slovenia, Slovakia, Sweden and 
the United Kingdom.

Figure 4. Variation of land, labour and capital productivities between 2005 and 2010 for agriculture in European countries

Source: own elaboration based on data from the Eurostat (more information in Data) 
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Although this study initially intended to include 
in its analysis the first year of the Kyoto Protocol 
(2005) and the year reflecting the end of the second 
phase (2012), this goal could not be achieved, as 2010 
is the last year for which there is valid information for 
all countries considered. Also, notice that we had to 
exclude Belgium, Norway and Switzerland for miss-
ing data on some variables, and Cyprus, Lithuania, 
Poland and Spain were eliminated for the lack of data 
on capital invested in agriculture in 2010.

Table 1 reports descriptive statistics of the vari-
ables used for the full sample of the agriculture sector 
(22 countries). On average, in 2010 in relation to 2005, 
the countries values show practically a maintenance 
of the ratio for the eco-efficiency measure (GVA/GHG). 
The mean values for labour and capital decreased 
while the mean values for land, energy and nutrients 
increased.

Methodology 

The DEA and SFA are briefly discussed for com-
pleteness and reader’s convenience. The DEA method 
(Charnes et al. 1978) uses linear programming to con-
struct a non-parametric piece-wise linear production 
frontier using different return to scales, and the pos-
sibility of multiple inputs and multiple outputs. Some 
well-known DEA models are illustrated in Coelli et al. 
(2005). It is important to note that all deviations from 
the production frontier are estimated as technical inef-
ficiency because the DEA does not account for noise.

Two DEA models are tested in this work: a constant 
return to scale (CRS) model and a non-increasing re-
turn to scale (NIRS) model. The NIRS output-orientat-
ed DEA model provides higher values of the technical 

efficiency and it is considered in this work, namely for 
the definition of supports in the SFA methodology.

Aigner et al. (1977), Battese and Corra (1977) and 
Meeusen and van den Broeck (1977) were the pio-
neers of the SFA methodology. The general stochastic 
frontier model is given by Equation 1:

 ln ,n n n ny f v u  βx   	 (1)

where n represents a producer (n = 1, 2, ..., N); f (.) is the 
production frontier; yn is the scalar output for pro-
ducer n; xn is a row vector with logarithms of in-
puts; β is a column vector of parameters to estimate; 
v is a random variable representing noise (measure-
ment errors and/or random shocks) and u ≥ 0 is a 
one-sided random variable representing technical 
inefficiency. The random variable v is usually as-
sumed to be normally distributed, 2(0, σ )vN  , and 
u is defined through different distributions such 
as exponential, non-negative half-normal, truncated 
normal or gamma. The choice of the distribution for 
the u error component represents the main criticism 
on the SFA, since different distributional assump-
tions can lead to different estimates of technical 
efficiency. However, the main advantage of the SFA 
is the structure of the composed error, which separates 
the impacts on production outside the producer’s 
control from technical efficiency.

The output-oriented measure of technical efficiency 
is defined by Equation 2.

  
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Table 1. Descriptive statistics for the full sample (22 countries) in years 2005 and 2010

Variables
2005 2010

minimum maximum mean standard 
deviation minimum maximum mean standard 

deviation
GVA/GHG 0.07 0.88 0.32 0.21 0.06 0.82 0.32 0.22
Land 7.47 70.09 43.54 18.16 7.52 71.19 44.69 18.06
Labour 4.00 2596.00 411.62 585.1 3.60 1639.00 324.00 411.93
Capital 9.81 10895.13 1993.13 3044.51 30.26 9273.35 1946.54 2834.64
Energy 7.83 3007.30 740.99 890.66 6.66 3080.30 747.44 897.03
Nutrients 43.73 297.47 124.50 74.46 38.83 464.44 130.56 105.74

agriculture gross value added (GVA) is considered as the desirable output and greenhouse gas (GHG) emissions as the unde-
sirable output. The GVA/GHG ratio is the measure of eco-efficiency

Source: authors’ own elaboration
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Equation 2 represents the ratio of the observed 
output to the potential output for the nth producer. 
Naturally, TEn assumes values between zero and one.

The parameters of the model (1) are usually estimat-
ed through maximum likelihood (ML). Kumbhakar 
and Lovell (2000) presented all the estimation pro-
cedures with the ML estimator for different distri-
butional assumptions required for the two-error 
components . However, in this work , with only 
22 countries (N = 22) in the sample and assuming a 
translog functional form for the production frontier 
(Coelli et al. 2005; Rezek et al. 2011), the model (1) 
became ill-posed, namely affected by a severe col-
linearity and with more parameters to estimate than 
observations, in both estimated models (2005 and 
2010). Thus, an alternative to the ML estimation 
is needed.

The maximum entropy (ME) formalism was first 
established by Jaynes (1957a, b) based on physics 
(the Shannon entropy and statistical mechanics) and 
the statistical inference. Golan et al. (1996) general-
ized the ME formalism and developed the general-
ized maximum entropy (GME) estimator, which can 
be used in models exhibiting collinearity, in models 
with small sample sizes (micronumerosity) and non-
normal errors, as well as in models where the number 
of parameters to be estimated exceeds the number 
of observations available (under-determined models).

Recently, an increasing interest with these estima-
tors in the technical efficiency analysis has emerged 
in the literature (Campbell et al. 2008; Rezek et al. 
2011; Macedo et al. 2014; Macedo and Scotto 2014; 
Robaina-Alves et al. 2015). The main motivation comes 
from the advantages of the ME estimation that avoids 
criticisms and difficulties of the DEA and SFA. For 
instance, with the ME estimation, the DEA method 
is used only to define an upper bound for the sup-
ports, and thus the main criticism of the DEA is used 
as an advantage. Furthermore, the composed error 
structure in the SFA is used without distributional 
assumptions, which means that the main criticism 
on the SFA is avoided with the ME estimation. Thus, 
by avoiding the criticisms and difficulties of the DEA 
and SFA, the ME estimators appear to be a promising 
approach in the efficiency analysis.

In this work, the supports for the parameters of the 
model are defined through [100, 50, 0, 50, 100] for 
the constant, and [5, 2.5, 0, 2.5, 5] for the remaining 
parameters of the model. The supports for the noise 
component are defined symmetrically and centred 
on zero with five points, using the three-sigma rule 

with the empirical standard deviation of the noisy 
observations.

An important advantage of the ME estimation 
is that the distributional assumptions are not nec-
essary, although the same beliefs can be expressed 
in the model through the error supports. In this work, 
three approaches are considered: GME1 is following 
Campbell et al. (2008), where the prior means are 
chosen according to the range of the mean efficiency 
of the DEA and SFA (in this work, the prior mean 
is close to the DEA mean efficiency: 58.2% in 2005 
and 52.5% in 2010); GME2 is following Rezek et al. 
(2011) and GME3 is following Macedo et al. (2014), 
in which the upper bound is given by –ln(DEAn), 
where DEAn represents the lower technical efficiency 
estimate obtained by the DEA in the 22 observations 
in the sample. The supports are presented in Table 2. 
Note that, as mentioned by Rezek et al. (2011), the 
selection “of these vectors sets a prior expectation 
of mean efficiency; however, it does not preordain 
that result.” This is an important feature of the ME 
estimation.

In the SFA with ML estimation, Kumbhakar and 
Lovell (2000) answering to the question “Do distribu-
tional assumptions matter?” argued that the “sample 
mean efficiencies are no doubt apt to be sensitive 
to the distribution assigned to the one-sided error 
component ( … ). What is not so clear is whether a 
ranking of producers by their individual efficiency 
scores ( … ) is sensitive to distributional assump-
tions.” Naturally, the same concern applies to the ME 
estimation: Do different supports for the inefficiency 
error component matter? This work provides some 
highlights on this discussion. If the sample mean 
efficiencies are clearly sensitive to the supports as-
signed to the inefficiency error component, the same 
does not happen to the classification of producers 
since the rankings established by GME1, GME2 and 

Table 2. Supports for the inefficiency error component 
with the generalized maximum entropy (GME) estimator

2005 2010
GME1 [0, 0.005, 0.01, 0.015, 2.68] [0, 0.005, 0.01, 0.015, 3.19]

GME2 [0, 0.01, 0.05, 0.1, 1] [0, 0.01, 0.05, 0.1, 1]
GME3 [0, 0.01, 0.02, 0.03, 1.84] [0, 0.01, 0.02, 0.03, 2.19]

GME1 – supports accordingly to Campbell et al. (2008);

GME2 – supports accordingly to Rezek et al. (2011);

GME3 – supports accordingly to Macedo et al. (2014)

Source: authors’ own elaboration
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GME3 are almost identical. For example, the rank 
correlation coefficient between the pairs of efficiency 
estimates is always greater than 0.976 (p-value ap-
proximately zero). Certainly, this issue deserves a 
further investigation in the future.

RESULTS

According to Table 3, the eco-efficiency in European 
agriculture has values between, approximately, 
16 and 100% in 2005, and between, approximately, 
11 and 100% in 2010, with DEA. In turn, the SFA 
with the GME provides scores of eco-efficiency be-
tween 35–88%, approximately, in 2005, and between 
31–90%, approximately, in 2010, depending on the 
version of the GME estimator considered in Table 1.

The three GME approaches used in this study pro-
duce similar efficiency rankings. However, GME3 
provides intermediate values, between GME1 pro-

viding the worst case (lowest average efficiency) and 
GME2 the most optimistic (higher average efficiency). 
All the estimation procedures were computed with a 
MATLAB code developed by the authors.

For the year 2005, the group defined by Austria, 
Hungary, the Netherlands, Portugal and Slovenia 
show the highest levels of eco-efficiency (between 
76–86%). On the other hand, countries as Estonia, 
Germany, Ireland, Latvia, and Slovakia are the group 
with the worst eco-efficiency levels (between 48–60%).

For the year 2010, Bulgaria, Finland, Greece, the 
Netherlands and Portugal are the group with bet-
ter eco-efficiency levels (between 73–88%) while 
Denmark, Germany, Latvia, Romania, and the United 
Kingdom are the group with worse eco-efficiency 
levels (between 44–51%).

Next, we will comment in particular one of the best, 
and one of the worst performances in the countries 
analysed. For instance, the results for Finland are not 
surprising, as we have seen in the introduction, that 

Table 3. Eco-efficiency in the European agriculture through the data envelopment analysis (DEA) and stochastic fron-
tier analysis (SFA) with generalized maximum entropy (GME) in years 2005 and 2010

Country
2005 2010

DEA GME1 GME2 GME3 DEA GME1 GME2 GME3
Bulgaria 0.687 0.630 0.816 0.727 0.514 0.643 0.830 0.732
Czech Republic 0.304 0.542 0.776 0.649 0.216 0.459 0.763 0.575
Denmark 0.445 0.563 0.777 0.659 0.325 0.379 0.730 0.496
Germany 0.245 0.428 0.724 0.553 0.356 0.329 0.689 0.439
Estonia 0.310 0.447 0.732 0.565 0.241 0.401 0.765 0.541
Ireland 0.159 0.350 0.685 0.478 0.112 0.419 0.752 0.539
Greece 1.000 0.638 0.803 0.714 1.000 0.781 0.876 0.840
France 0.453 0.568 0.801 0.687 0.501 0.443 0.794 0.589
Italy 0.915 0.543 0.763 0.637 1.000 0.600 0.809 0.695
Latvia 0.212 0.421 0.739 0.560 0.133 0.311 0.713 0.448
Luxembourg 0.365 0.576 0.793 0.683 0.466 0.516 0.796 0.637
Hungary 0.592 0.710 0.847 0.790 0.381 0.484 0.787 0.610
Malta 1.000 0.648 0.820 0.738 1.000 0.641 0.820 0.721
Netherlands 0.759 0.728 0.845 0.795 0.779 0.832 0.896 0.881
Austria 0.548 0.802 0.876 0.855 0.585 0.545 0.792 0.650
Portugal 0.616 0.763 0.872 0.837 0.722 0.657 0.849 0.758
Romania 1.000 0.504 0.755 0.613 0.623 0.396 0.735 0.513
Slovenia 0.751 0.682 0.825 0.756 0.728 0.617 0.807 0.697
Slovakia 0.391 0.496 0.742 0.597 0.241 0.601 0.826 0.712
Finland 1.000 0.555 0.779 0.659 1.000 0.645 0.826 0.730
Sweden 0.830 0.572 0.799 0.686 0.403 0.380 0.749 0.516
United Kingdom 0.221 0.508 0.781 0.640 0.217 0.342 0.723 0.472

GME1 – supports accordingly to Campbell et al. (2008); GME2 – supports accordingly to Rezek et al. (2011); GME3 – supp-
orts accordingly to Macedo et al. (2014)

Source: authors’ own elaboration
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this country had a good performance in GVA/GHG 
ratio and the consumption of energy and nutrients. 
Moreover, Finland improved as well as the factor 
productivity, having all the necessary ingredients 
to raise its eco efficiency level in this period.

Finland has many good examples of productive, 
carbon-wise and sustainable agriculture systems 
and innovations. For instance, Finland has a net-
work of nutrient and energy-effective colleges and 
school farms, where the main themes are biogas, 
energy efficiency, composting, solid biofuel, ma-
nure logistic, organic fertilisers and protein self-
sufficiency. Kimmo Tiilikainen, the Finish Ministry 
of Environment, reported that their government had 
the priority of increasing the Finish nutrient recycling 
and developing a resource efficient food system based 
on the circular economy, through research, innova-
tions, dissemination of information and investment 
support (COP22 United Nations Climate Change 
Conference and UNEP 2016).

Finish farmers are pointed out as innovative, and 
they are encouraged to take climate actions, as good 
management of soil, improving its productivity and 
capacity of adapting, thanks to the better water re-
tention capacity. Good growth potential of the land 
also supports the carbon objectives as more carbon 
is sequestered into the soil. Appropriate use of plant 
nutrients improves productivity and contributes 
to mitigation, while diverse crop rotations reduce 
the risks to farmers and enhance their adaptation 
capacity. Healthy and well-cared-for animals as a part 
of carbon- rich production systems produce valuable 
food with a minimised carbon footprint.

On the other hand, Ireland was among countries 
with the worst levels of the GVA/GHG in the period 
analysed, also with high levels of energy and nutrients 
intensity. Moreover, Ireland verified a decrease in fac-
tors productivity and had an overall bad performance 
in the agriculture eco-efficiency.

Ireland had the biggest net gain per citizen of any 
EU country under the CAP and the highest CAP 
direct payments per farm worker and per hectare 
of farmland. The Irish farm sector not only benefits 
from cash payments from the EU, but also from a high 
level of tariff protection on its key sectors of beef and 
dairy (OECD 2016). Despite these, the bad perfor-
mance could be related with some factors as pointed 
in (European Commission 2016), as the average age 
of Irish farmers (57) and the fact that only 6.8% of Irish 
farmers are under 35 years (7.5% in EU-28). Moreover, 
Irish Cattle and Sheep Farmers Association (2010), 

points out some factors that could justify the Irish 
eco-efficiency performance: (i) the average farm size 
of 32 hectares, and the propensity towards fragmented 
holdings makes many farms unviable and almost 
no farms do have the necessary economies of scale; 
(ii) extremely poor products prices combined with 
high investment on farm facilities, which means 
that many farmers are carrying heavy borrowings; 
(iii) high costs in the Irish economy – energy, electric-
ity, labour, the carbon tax on green diesel, the regu-
latory compliance; (iv) too much tendency by some 
farmers to over-invest in machinery and buildings 
without adequate assessment of the economic returns; 
(v) the lack of tradition of machinery sharing and the 
consequent under-utilisation of costly equipment; 
(vi) the over-dependence on the EU subsidies.

Confronting the significant evidence found in the 
study of Vlontzos et al. (2014) on the energy and 
environmental efficiency in Europe, despite the es-
timated models are different, there is a confirmation 
that only Germany and Sweden display low levels 
of efficiency and confirming that to the countries 
showing the highest levels, belong Denmark, France 
or Ireland. The results from Hoang and Rao (2010) 
and Hoang and Coelli (2011) show that the most sus-
tainable systems in the European agriculture were the 
Belgium-Luxembourg, Denmark and the Netherlands, 
although our study only confirms this evidence for 
the Netherlands.

This mix of evidence found in the three referred 
studies can be explained by its connection to the con-
siderable changes in the energy and environmental 
efficiency after the implementation of the new CAP 
(Bartolini and Viaggi 2013). The subsidy policy had 
effects on the energy and environmental efficiency 
levels of the new Member States compared to the older 
Member States, as admitted by Hoang and Rao (2010) 
and Vlontzos et al. (2014). On the other hand, these 
differences are also owed to the low level of technology 
implemented in the production process in agriculture 
more evident in the countries of Central and Eastern 
Europe (Vlontzos et al. 2014). In fact, the differences 
in productivity and farm income between countries 
and/or agricultural regions are associated with differ-
ent government support schemes for the economically 
weaker regions, on the other hand, the strengthening 
of specific sectors of the economy where agriculture 
is a central focus, as admitted by Gorton and Davidova 
(2004). However, we should note that the structure 
of agriculture in the EU varies not only from country 
to country, but also between agricultural regions, 
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so the decisions on where and how to produce a given 
agricultural crop or animal production may depend 
heavily on local conditions, such as the type of soil, 
climate and infrastructure.

In general, we can see that there has been mainte-
nance of the overall eco-efficiency of the agriculture 
sector in Europe, although it has improved in some 
countries and worsened in others (Table 3).

CONCLUSION

A maximum entropy approach, which combines 
the information from the DEA and the structure 
of composed error from the SFA without requiring 
distributional assumptions, was used to estimate an 
ill-posed stochastic frontier model with a translog 
specification. The methodology was applied with the 
goal of estimating the agricultural eco-efficiency at the 
country level for 22 European countries, considering 
data for 2005 and 2010.

Our results show that, in 2005, the group defined 
by Austria, Hungary, the Netherlands, Portugal and 
Slovenia reveals higher levels of the eco-efficiency; 
and countries as Estonia, Germany, Ireland, Latvia 
and Slovakia are the group with the lowest levels 
of eco-efficiency. However, in 2010, Bulgaria, Finland, 
Greece, the Netherlands and Portugal are the group 
of countries with higher levels of eco-efficiency, while 
Denmark, Germany, Latvia, Romania and the United 
Kingdom are the group with the lowest levels of eco-
efficiency.

In general, we can see that there has been mainte-
nance of the overall eco-efficiency of the agriculture 
sector in Europe, although it has improved in some 
countries and worsened in others. From the aggregate 
point of view, there was almost no economic growth 
in this period, and the GHG emissions did not grow.

This period suffered from an economic crisis start-
ing in 2008. Given that the Kyoto Protocol imposed 
its first targets to be met between 2008 and 2012, the 
period under study (2005–2010) is precisely a period 
of adaptation and adjustments of the various sectors 
to meet national emissions goals.

At the CAP level, the successive reforms that have 
been approved had the objective of promoting the 
sustainable development of agricultural activity, chang-
es in the production systems and practices aimed, 
in particular, at the extensification and the reduc-
tion of the use of nitrogen fertilisers. In this context, 
countries encouraged the practices and production 

systems that promote the sequestration of carbon 
in agricultural soil, such as the direct seeding and 
biodiverse pastures, decreasing the concentration 
of CO2 in the atmosphere. Moreover, they also con-
tribute to the soil protection against the water erosion 
and to improve fertility through the increased soil 
organic matter content.

Furthermore, the whole policy of supporting re-
newables developed after the Kyoto, including the 
support for farmers, in particular for the renewable 
energy production projects, as well as the increas-
ing demand of consumers for the organic products, 
has reduced the consumption of fossil fuels as well 
as pollutant fertilisers of the sector.

Given that in some countries, there has been an 
improvement in the eco-efficiency in this period, 
we can associate it with these the Kyoto-related meas-
ures. In other countries, the GHG reduction may 
be “camouflaged” by the economic crisis, but we are 
not sure that the changes are only cyclical or structural, 
that can improve the eco-efficiency after the crisis.

The topics of future research include a detailed 
econometric analysis to better study the specific 
determinants of the eco-efficiency indicators, in-
cluding the variables considered in this work and 
others such as taxes, subsidies or information at the 
time of the country’s entry into the EU. Another use-
ful approach could be the use of the decomposition 
analysis to identify the most relevant factors in the 
eco-efficiency assessment.

The authors also propose a complementary analysis 
using decoupling indicators, according to Tapio (2005), 
which investigates the elasticity of the GVA relative 
to the consumption of resources or the production 
of some pollutants using the dissociation indicator. 
Diakoulaki and Mandaraka (2007), De Freitas and 
Kaneko (2011), combine the dissociation index with 
the decomposition analysis, while Jorgenson and 
Clark (2012), Wang (2013) combines the dissociation 
analysis with econometric methods.
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