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Poultry farming describes the raising of domesti-
cated birds such as chickens, ducks, geese, turkeys, 
guinea fowl, pigeons, quails and pheasants. Among 
these, and in the current market, chickens have the 
highest economic value. The greatest difference be-
tween farming products and industrial products 
lies in the restrictions due to the biological charac-
teristics inherent in a living organism. Due to the 
growing process, poultry farming products cannot 
be massively produced in a few days and it takes, for 
example, about six to seven weeks to raise a white 
broiler chicken to maturity. In order to raise chick-
ens for meat, chicken farmers must determine the 
breed, quantity and stocking density in each of their 
henhouses during the planning phase. According to 
a survey of chicken farmers in Taiwan, feed costs for 
raising a broiler account for 64.8% of total production 
costs indicating that the direct costs are very high 
compared to other costs. To reduce feeding costs, 
chicken farmers attempt to sell the mature chickens 
to market in a timely fashion. Because the market 
demand and sale price of chickens usually fluctuates 
over time, the sale price at the point when chickens 

are sold to market is usually different than the price 
when the chicken production was initiated. Thus, poor 
chicken production planning may produce products at 
an unsuitable time and result in higher costs and poor 
revenues. In order to increase profits, it is necessary 
for chicken farmers to properly plan the raising and 
harvesting of different chicken breeds in respective 
henhouses to maximise their profit. 

To help chicken farmers to deal with this problem, 
this paper investigated chicken production in multi-
henhouses and multiple types of chicken and aimed to 
develop proper production and harvesting schedules 
to maximise profits over a given planning period. The 
production planning comprises the number of batches 
of chicken to be raised in each henhouse, and the 
decisions of what breed of chicken to raise, when to 
start raising and the duration of the raising period for 
each raising batch. The harvesting schedule focuses 
on the problems of when to harvest and how many 
chickens to harvest. This paper simultaneously deals 
with the decision problems associated with produc-
tion quantity, raising area selection and harvest for 
chicken raising.
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LITERATURE REVIEW

In the past, most production planning-related 
research has focused on problems of the livestock 
industry. Stygar and Makulska (2010) pointed out 
that mathematical models were usually used to derive 
production planning decisions for livestock manage-
ment. The methodology used to generate these models 
can be divided into optimisation approaches (Wang 
and Leiman 2000; Rodríguez 2009; Yu et al. 2009; 
Moghaddam and DePuy 2011; Ohlmann and Jones 
2011; Rodríguez-Sánchez 2012), and simulation ap-
proaches (Coleno and Duru 1999; Yu and Leung 2005; 
Gradiz et al. 2007; Villalba et al. 2010). Among these 
reports, Rodríguez-Sánchez et al. (2012) formulated a 
linear programming model to explore sow production 
planning problems by considering pig equipment, 
survival rate, viviparous rate and the number of pig 
houses. Kristensen and Søllested (2004) applied the 
multi-level hierarchical Markov process to develop a 
model to determine the time to sell pigs and purchase 
piglets. Villalba et al. (2010) proposed a stochastic 
simulation model to address herd breeding problems. 
Crosson et al. (2006) developed a linear program-
ming model to investigate beef production problems. 
Ohlmann and Jones (2011) proposed a mixed-integer 
linear programming model to determine the optimal 
selling weight for piglets. Pathumnakul et al. (2009) 
addressed the optimal breeding and harvesting times 
for shrimps. Yu and Leung (2005) were also concerned 
with shrimp harvesting over multiple periods and 
ponds: a linear programming model was developed 
to solve the problem. Tian et al. (2000) investigated 
the production scheduling problem for shrimps. In 
their model, the size and number of ponds, shrimp 
stocking density and shrimp survival rate are consid-
ered. Forsberg (1996) were interested in determining 
the optimal breeding and harvesting time for fish. 
Bjørndal (1988) focused on fish harvesting problems 
and Hern (1994) addressed the harvesting problems 
in the farming industry. 

The literature mentioned above has mostly focused 
on developing production planning for shrimps, pigs 
and cattle. The harvesting problem and the raising 
area selection/allocation problem were rarely dis-
cussed. Plà-Aragonés (2005) formulated farming 
allocation as a semi-Markova decision problem, and 
used a simulation approach to solve the proposed 
model. Coleno and Duru (1999) investigated the 
distribution of cow grazing areas and forage harvest 
dates. McCarthy et al. (1998) discussed land allocation 

for grazing and farming cattle. Engle (1997) proposed 
a linear programming model to discuss land alloca-
tion for fish and agriculture products. Engle et al. 
(2010) dealt with the production planning problem in 
relation to catfish. Rupasinghe and Kennedy (2006) 
discussed the feeding size problem for barramundi. 
Instead of a single-batch harvesting, Yu et al. (2006) 
proposed a partial harvesting schedule to investigate 
a production planning problem with a single cycle 
for culture species. They also derived necessary 
conditions to efficiently determine a discrete partial 
harvesting strategy.

Many studies have proposed strategies for deal-
ing with the problems of animal husbandry and the 
industry’s production planning, but few have simul-
taneously dealt with the problems of production 
quantity, raising area selection and harvest for the 
chicken industry. This study was aimed at develop-
ing an integer programming model to investigate 
these three problems for chicken farmers raising a 
variety of chicken types in a number of different-
sized henhouses. A real case in Yunlin County in 
Taiwan was also investigated. This study derived 
decisions by applying this model to maximise profits 
in a scheduled period with the purpose of help-
ing chicken farms complete proper production and 
harvesting planning. Sensitivity analysis was also 
conducted to explore the impact of parameter vari-
ations such as cost to feed to maturity, the number 
of henhouses and the number of chicken types on 
the computational results.

MODEL AND ASSUMPTION

A chicken farmer runs a farm business raising 
K-types of chickens in L henhouses. Baby chicken 
type-k is purchased from a supplier at a cost of b

kc  
dollars per unit and needs min

kn  weeks of feeding 
to reach maturity status. Based on considerations 
related to chicken meat quality and raising time, 
baby chicken type-k is raised for at most max

kn  weeks. 
Depending on the breeding age, the amounts of feed 
are different. The overall cost of feeding a type-k 
chick to maturity is roughly ck dollars. After the age 
of maturity, the cost of feeding a type-k chicken is 

g
kc  dollars per week. 
The farmer does not raise more than one type of 

chicken in a henhouse at the same time. The chick-
ens’ growth and survival rates will decrease if there 
are too many chickens in a henhouse. Thus, each 
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henhouse has a farming capacity/limit for different 
types of chicks. The farming capacity for chicken 
type-k raised in henhouse  , 

ktg , cannot exceed 

km  
chicks. During the breeding periods, chickens may 
die due to illness and other factors. The ratio of the 
number of chickens scheduled to be harvested to 
the number of saleable chickens of chicken type-k in 
henhouse  is denoted by 

kr . Suppose that it is planned 
that 

kto  type-k chickens will be harvested at the end 
of period t from henhouse  . Then, the expected 
saleable chickens are  

k ktr o . In addition, a new batch 
of chickens cannot be raised in a henhouse before 
the henhouse is cleaned. The time required to clean 
a henhouse is bk weeks when its previous breeding 
chicken is type-k. 

Demand for type-k chicken in week t is assumed to 
be dkt. The sales prices for all chickens fluctuate over 
time. The sales price for type-k chicken in week t is 
estimated to be pkt. The chicken farmer expects to 
make a T-week production plan to maximise his/her  
profit. The notation is summarised as follows. 

Parameters
K	 the number of types of chicken
L	 the total number of henhouses
T	 the total planning period (weeks)
bk the time needed to clean a henhouse after breed- 

 ing chicken type-k
b
kc  the unit purchasing cost of baby chick type-k

ck	 the overall cost of feeding a type-k chick to reach  
 maturity

g
kc  the unit cost of feeding a type-k maturity chick  
 per week

dkt the demand for chicken type-k in week t in market


km  the breeding capacity/limit for chick type-k in  
 henhouse 

min
kn  the minimum breeding weeks of a type-k chick
max
kn  the maximum breeding weeks of a type-k chick

pkt the unit sales price for a type-k chicken in week t


kr  the survival rate (%) for a type-k chick in hen- 
 house 

B	 a very large number
skt the number of saleable type-k chickens in week t


ktv  the remaining number of mature type-k chickens 
  raised in henhouse  at the start of week t

Decision variables


ktx  =1 if type-k chicken is breeding in henhouse   
 in week t and zero otherwise


kty  =1 if the raising of a batch of type-k chickens  
 begins at the start of week t in henhouse  and 
 zero otherwise



ktz  =1 if the type-k chicken that is raised in henhouse 
  can be harvested at the end of week t and zero 
  otherwise


ktg  the number of type-k baby chicks that are raised  
 from the start of week t in henhouse 


kto  the harvest number of type-k chickens from  
 henhouse  at the end of week t

Mathematical model

Before developing the mathematical model, we 
use the following example to express the relation-
ship among the values of 

ktx , 

kty  and 

ktz . Consider a 
T = 18 period raising plan with two types of chick 
(K = 2) and a henhouse (L = 1), namely henhouse 1. 
Suppose that it requires three periods to raise a baby 
chick to reach maturity and one period to clean the 
used henhouse for both chicken types. The maximum 
breeding period for both chickens is assumed to be 
six periods. Table 1 illustrates a feasible raising sched-
ule and shows that no chick is raised before period 
three. The value of 1

14y  = 1 means that at the start of 
period four, a batch of type-1 baby chicks is raised. 
The batch of chicks is raised from periods four to 
eight ( 1

1 1=tx  for 4 ≤ t ≤ 8). At the end of period six, 
the batch of baby chicks reaches maturity and can be 
harvested. The harvestable periods are from period 
six to period eight ( 1

1 1=tz  for 6 ≤ t ≤ 8). Thereafter, the 
henhouse is cleaned in period nine. Until period 11, 
the farmer raises a batch of type-2 chicks ( 1

2,11 1=y ). 
This batch of chicks is raised until period 16 ( 1

2 1=tx  
for 11 ≤ t ≤ 16). The batch of baby chicks reaches 
maturity at the end of period 13 and can be harvested 
over periods 13–16 ( 1

2 1=tz  for 13 ≤ t ≤ 16). 
The purpose of the problem is to maximise the 

expected profit by determining the values of 

ktx , 

kty , 


ktz , 

ktg  and 

kto . The objective function is composed of 
sales revenues (R), costs of purchasing baby chicks 
(PC), food costs of feeding baby chicks to maturity 
(FCB) and costs of feeding chickens after maturity 
is reached (FCM). Let F be the total expected profit. 
Then, we wish to:

1 1 1 1 1 1 1 1

1 1 1

max  
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It requires min
kn  weeks to raise a type-k baby chick 

to reach maturity. Thus, a type-k baby chick raised 
from the start of week max− kt n  will reach maturity at 
week t – 1. Accordingly, the relationship between the 
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number of mature type-k chickens raised in henhouse 
 at the start of week t, 

ktv  and the number of type-k 
baby chicks raised from the start of week t in henhouse 
, 

ktg , can be expressed by Equation 2.

min

min

min
, 1 , 1,

0,                                 ,  ,  

,  ,  ,  − −−

 ∀ ≤=  + − ∀ >



  





k

k
kt

k t k t kk t n

k t n
v

v g o k t n
	 (2)

Suppose that it is planned to harvest 

kto  type-k chick-
ens from henhouse  at the end of week t. Since the 
survival rate for type-k chickens raised in henhouse   
is 

kr , the expected sales amount is  

k ktr o . Thus, the 
number of saleable type-k chickens in week t, skt, is 
expressed by Equation 3.

1
, ,

=
= ∀∑  



L
kt kt ks o r k t 	 (3)

Since skt cannot exceed demand, we have Constraint (4).

, ,≤ ∀kt kts d k t 	 (4)

In addition, we have the following constraints:
1

' '' ' 1
(1 ) , , ,−

= − =
− ≥ ∀ >∑ ∑  



k

t K
k t kt k kt t b k

x y b k t b 	 (5)

1 1, ,= ∀ 

k kyx k 	 (6)

, , ,≤ ∀ 

kt ktxy k t 	 (7)

, 1 2, , , 1−+ + ≤ ∀ >  

kt kt k ty x x k t 	 (8)

, 1 , , , 1−≥ − ∀ >  

kt kt k ty x x k t 	 (9)

1
min

min
''

, , ,−+

=
≥ ∀∑  



kt n
kt k ktt t

x n y k t 	 (10)

min
min min

'' 1
, , ,

= − +
≥ ∀ ≥∑  



k

t
kt kt k kt t n

x z n k t n 	 (11)

min
min min

'' 1
, , ,

= − +
− < ∀ ≥∑  



k

t
kt k kt kt t n

x n z B k t n 	 (12)

max
max max

''
0, , ,

= −
− ≥ ∀ ≥∑ 



k

t
k kt kt t n

n x k t n 	 (13)

, , ,≤ ∀ 

kt ktg y B k t  	 (14)

, , ,≥ ∀ 

kt ktg y k t 	 (15)

, ,≤ ∀ 

kt kg m k 	 (16)

1
1, ,

=
≤ ∀∑ 



K
ktk

x t 	 (17)

, , ,≥ ∀ 

kt ktx B v k t 	 (18)

, , ,≤ ∀ 

kt ktz x k t 	 (19)

, , ,≤ ∀ 

kt kto z B k t 	 (20)

max
min

, 1
, , ,

− +
≤ + ∀ ≥  



k
kt kt kk t n

o v g k t n 	 (21)

, , {0,1}, , ,∈ ∀  

kt kt ktx y z k t 	 (22)

Equation 1 is the objective function (total profit) to 
be maximised. Equation 2 expresses the number of 
mature type-k chickens raised in henhouse  at the 
start of week t. Equations 3 and 4 give the sales amount 
in week t. Constraint (5) ensures that there are enough 
clearing periods before the raising of a batch of chicks 
begins. Constraints (6) and (7) establish the relation-
ship between 

ktx  and 

kty  to ensure that a batch of type-k 
baby chicks is raised in period t if chick type-k is raised 
in period t. Constraint (8) confines that , 1 0− =

k tx  if the 
raising of the type-k chick starts in henhouse  ( 1=

kty ).  
That is, if 1=

kty , then , 1 0− =

k tx . Note that ≤ 

kt kty x  in 
Constraint (7) ensures 1=

ktx  if 

kty  = 1. Thus, if 

kty  = 1, 
then , 1−



k tx  = 0 due to , , 1 + 2−+ ≤  

kt k t k ty x x  in Constraint (8). 
Constraint (9) confines the relationships of 

kty , 

ktx  and 
, 1−


k tx  when no new batch of chicks are raised from period 
t ( 0=

kty ). Thus, one of the following two situations will 
occur: (i) a batch of type-k chicks is still being raised 
in period t, that is 1=

ktx , or (ii) no chick is raised in 
this period, that is 0=

ktx . In case (i), since 1=

ktx , we 
have , 1 1− =

k tx  due to , 10 −= ≥ −  

kt kt k ty x x . In case (ii), since
0=

ktx , Constraint (8) still holds for , 1 0− =

k tx  or , 1 1− =

k tx .  
Constraint (10) ensures that there is enough time to 
breed chickens to reach maturity before the end of 
the planning period. Constraints (11) and (12) ensure 
harvest if and only if the minimum number of breed-
ing weeks has been reached. Constraint (13) ensures 
that the raising weeks cannot exceed the maximum 
number of breeding weeks. Constraints (14) and (15) 
ensure that a new batch of baby chicks is raised if a 
raising decision is made. Constraint (16) shows that 
the number of chicks raised cannot exceed the breed-
ing capacity. Constraint (17) ensures that at most one 
type of chicken is raised in a henhouse. Constraint 
(18) ensures that if there are chicks in a henhouse then 
these are raised. Constraint (19) shows that no chicken 
can be harvested if no chicken is raised. Constraint 
(20) ensures that no chicken is harvested during the 
non-harvest period. Constraint (21) determines that 
the number of chickens harvested cannot exceed the 
number of chickens raised. Constraint (22) shows the 
ranges of variables 

ktx , 

kty  and 

ktz . 

APPROACH

A raising plan consists of several chick-raising deci-
sions. Since a raising decision in a previous stage will 
affect the subsequent ones, the considered raising plan 
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problem is a constrained combinatorial optimisation 
problem. Basically, the complexity of a combinato-
rial optimisation problem is highly influenced by the 
number of decision variables. In the chick raising 
problem, the decision variables include 

ktx , 

kty , 

ktz , 

ktg  
and 

kto . The total number of decision variables goes 
up to 5*K*L*T. For example, if T = 26, L = 6, K = 5,  
then the farmer has to deal with a combinatorial prob-
lem with 3900 decision variables. Optimally solving 
this problem in a reasonable computational time is 
intractable, especially for larger-scale problems. Thus, 
a problem-solution approach that can give compro-
mise solutions within a reasonable computational 
time is important. Several commercial optimisation 
software programs, such as LINGO solver and CPLEX 
solver can be adopted to solve this problem. However, 
computational experiences show that, for larger-scale 
problems, these commercial optimization software 
programs cannot guarantee feasible solutions within 
a reasonable timeframe. Thus, we developed a hybrid 
heuristic approach to generate comprise solutions 
within a reasonable time in this paper. 

Next, we introduce the following notations to the 
problem-solution approach.
TD the total unsatisfied demands
ts	 the starting time for the raising of a batch of  

 baby chicks
te	 the ending time for a batch of raised chicks

r
ktd  the unarranged products of demands for type-k 
 chickens in period t


ktF  the remaining capacity to raise type-k chicks in  
 henhouse  at the start of period t


ktjh  =1 if type-k chickens can be raised in henhouse  
  at the start of period t and can produce a posi- 
 tive profit for harvesting in period j, and 

ktjh =0 
 otherwise

An ( , , )= n n nk t , the raising pair for the nth raising  
 decision

Ωn selection pool for action An
Ψkt the harvestable periods for type-k chicks raised  

 from period t

The approach is established on a batch-by-batch 
raising concept. For each raising decision, the ap-
proach determines what kind of chick to raise, where to 
raise and when to start to raise. Suppose ( , , )= n n n nA k t
is the nth raising decision, Then, a batch of type-kn 
baby chicks is scheduled to be raised in henhouse  n 
from the start of period tn. In addition, the approach 
will also determine how many to raise and when to 
harvest. 

The raising decision of An is selected from the 
selection pool Ωn. The generation of selection pool 
Ωn is described in the pool generation procedure. The 
determination of the raising pair is described in the 
raising combination procedure. The raising and the 
harvesting number are described in the allocation 
procedure. The status update procedure renews the 
raising status after each raising decision. The proposed 
solution approach performs these four procedures 
repeatedly until all henhouses are unavailable or all 
demands are satisfied. 

Below, we present the solution approach in detail. 
First, let 

ktjR  be the expected profit from the raising 
of a type-k chicken in henhouse   from the start of 
period t and harvested at the end of period j. 

ktjR  is 
defined by Equation 23.

min
min( 1)

, , ,

0 otherwise

 − − − − − +
∀ ≤ − ∈Ψ= 









b g
kt k k k k

k t
ktj k

p c c j t n c
k t T n j

R r
	

           

min
min( 1)

, , ,

0 otherwise

 − − − − − +
∀ ≤ − ∈Ψ= 









b g
kt k k k k

k t
ktj k

p c c j t n c
k t T n j

R r 	  (23)

where 

min max{ | 1 min{ , 1},Ψ = + − ≤ ≤ + − ∀t k kj t n j T t n t 	 (24)

The periods of min 1+ −kt n  and maxmin{ , 1}+ −kT t n  are, 
respectively, the earliest period and latest period to 
harvest type-k chickens raised from period t. The 
initial values of 

ktjh , 

ktF , r
ktd , TD, 

ktx , 

kty , 

ktz , 

ktg  and 

kto  
are set as follows.
(A)  1 1

K T r
ktk t

TD d
 

    and  = =g 0= = =    

kt kt kt kt ktx y z o  
(B)  , ,= ∀r

kt ktd d k t
(C)  min, , 1= ∀ ≤ − + 

kt k kF m k t T n  and 

ktF  = 0 otherwise
(D)  

ktjh  = 1 if 

ktjR  > 0 and 

ktjh  = 0 if 0≤

ktR .

In (D), 

ktjh  is set to zero since harvesting in period j 
for type-k chicks raised from period t cannot gener-
ate positive profit.

(1) Pool generation procedure
For each raising batch, a farmer must determine 

what kind of chick to raise, where to raise and when 
to start to raise. The pool generation procedure is 
used to produce a candidate raising pair ( , , )k t . At 
the nth allocation, we compute the profit value of 
each possible raising pair of ( , , )k t  with 

ktF  > 0 us-
ing Equation 25.

, , ,
∈Ψ

= ∀∑



kt

r r
kt kt ktj

j
U d R k t 	 (25)
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We refer to the raising pair ( , , )k t  corresponding 
to the jth highest positive value in 

ktU s as set Anj and 
set Ωn as Ωn = Ωn{ An1, An2, An3}.

(2) Raising combination procedure
According to the selection pool and the values of 

a chromosome (a solution pattern) (v1, v2, …, vKL), 
the raising combination procedure is used to select 
the raising decision An from pool Ωn to determine 
what kind of chick to raise, where to raise and when 
to start to raise at the nth raising plan. The solution 
will stop raising if 0≤

ktU for all k,   and t. 
The selection rule is based on the element appear-

ing in a chromosome which is codified by KL distinct 
integer numbers within the range of [1, 3]. For ex-
ample, suppose that the values of a chromosome are 
(v1, v2, …, vKL) = (1, 3, 2, 1, 1, 2, 1, 2, 1) and the selec-
tion pool at the third raising batch is Ω3 = {(2, 3, 1), 
(3, 1, 2), (2, 2, 1)}. In this case, since the number ap-
pearing in the third position of the chromosome is 
v3 = 2, we set the raising combination A3 at (3, 1, 2). 
That is, we start to raise type-3 chickens from period 2  
in henhouse 1. 

The number of pairs in Ωn may be less than the 
value of vn. We use the following rule to deal with 
this problem. Let Ωn  be the number of pairs in Ωn .  
At the nth raising decision, if Ωn  is less than vn, we 
replace vn with Ωn . For example, if Ωn  ={(2, 3, 1), 
(3, 1, 2)} and v3 = 3, then, since Ωn  =2, we update 
v3 = 2 and set A3 = (3, 1, 2) to obtain 1

32 1=y .

Allocation procedure
Suppose that a decision of ( , , )= nA k t  is made in 

the nth raising decision. The procedure solves the 
problems of how many chicks to raise and when to 
harvest according to the following steps.

(A)	Let 1=

kty  and ' 1=

ktx  for min' 1≤ ≤ + −n n kt t t n
(B)	 Let min' max{1, 1}= + −n kt t n
(C)	If ' 0=

ktth  or 0=ktF  go to Step (J)
(D)	 ' 1=

ktx , ' 1=

ktz  and ' ' 'min{ / , }=  r
kt kt k kto d r F

(E)	 ' 'min{ / , }= +   r
kt kt kt k ktg g d r F

(F)	 ' '= − r r
kt kt ktd d F  if ' >

r
kt ktd F  and ' 0=r

ktd  if ' ≤
r

kt ktd F
(G)	 ' 'min{ / , }= −   r

kt kt kt k ktF F d r F
(H)	 ' 'min{ / , }= −  r

kt k ktTD TD d r F
(I)	 If min' 1 1+ = + −

nn kt t n , let ' ' 1= +t t and go back to  
	 Step (C), otherwise '=et t . 

(J)	 Raising allocation for the nth allocation steps

In Step-A, 1=

kty  since a batch of type-k chicks 
is raised in henhouse   at the start of period t. The 

batch of chicks cannot be sold before they reach 
maturity and they must be raised during periods

min' 1≤ ≤ + −kt t t n . Thus, ' 1=

ktx  for min' 1≤ ≤ + −kt t t n . The 
allocation procedure for the nth allocation reports the 
number of 

ktg  type-k chickens to raise in henhouse   
over period ts = t to period te. The harvest number 
in period 't , min 1 ' e

kt n t t     is '


kto .

(4) Status update procedure
To guarantee that the produced solutions are fea-

sible solutions (all constraints are satisfied), we have 
to renew the parameter 

ktjh . Suppose the raising of 
type-k* chickens has been scheduled for periods ts 
to te in henhouse  , then 

ktjh  are updated according 
to the following rules.
(A) Since there is not enough time to raise a type-

k chick from the start of period	   
min{max{1, 1}, }∈ − − + −s s

k k kt t b n t b  to reach matu-
rity before period ts – bk, we set ' 0=

ktth  for all k, 't , 
min{ | max{1, 1} }∈ − − + ≤ ≤ −s s

k k kt i t b n i t b .
(B) Since henhouse   is occupied from period ts to 

te, type-k chicks cannot be raised from the start of 
period { ,min( , )}∈ − +s e

k kt t b T t b . Thus, ' 0=

ktth  for 
all k, 't , { | max{1, } min( , )}∈ − ≤ ≤ +s e

k kt i t b i T t b .
(C) Note that henhouse   is occupied from period ts 

to te. Type-k chicks cannot be harvested in period 
' { ,min( , )}∈ − +s e

k kt t b T t b , Thus, ' 0=

ktth  for all k, 
t, ' { | min( , )}∈ − ≤ ≤ +s e

k kt i t b i T t b .
(D) Note that henhouse   is occupied from period ts 

to te. Type-k chicks cannot be raised at the start of 
period 1 ≤ t ≤ ts and harvested after period ts – bk.  
Thus, '1

0
=

=∑ 

T
kttj

h  for all k, 	  
1 ≤ t ≤ ts – bk, ' { | }∈ − ≤ ≤s

kt i t b i T .
(E) Let 

ktF = 0 if 
1

0
=

=∑ n
T

ktjj
h .

(F) Let TL = TL – 1 if
1 1

0
= =

=∑ ∑ 

K T
ktk t

F .

The outline of the proposed solution approach is 
depicted in Figure 1. Figure 1a shows the outline of 
the solution approach and Figure 1b shows the steps 
involved in evaluating the profit for each chromo-
some (solution pattern). 

TEST PROBLEMS

We tested two main types of problem to evaluate 
the performance of the proposed approach. The cor-
responding parameters are based upon a company 
in Taiwan. This company has L = 12 henhouses and 
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breeds seven types of chicken. The raising capacity 
for type-k chicks in henhouse  , 

km , is shown in Table 
2. The survival rate for the seven types of chicken 
in each henhouse, 

kr , are roughly over [0.855, 0.96] 
and are shown in Table 3. The time needed to grow 
type-k chickens to maturity is min 13=kn  weeks. The 
maximum breeding time for these seven types of 
chicken must be no larger than max

kn  = 20 weeks. The 
cost of breeding baby chicks to maturity, ck, and 
the weekly cost of breeding mature chickens, g

kc ,  
are estimated and shown in Table 4. Before a new 
batch of chickens can be raised in a henhouse, the 
henhouse must be cleaned, a process which requires 

one week. At maturity, meat weights of the seven 
types of chicken can reach up to 3.3, 2.7, 2.7, 2.16, 
2.7, 3.0 and 2.228 kg, respectively. The average sales 
prices per chicken for the seven types of chicken 
are 264.0, 216.0, 225.0, 180.0, 292.5, 390.0 and 296.4 
(NT$ dollars), respectively. However, since the sales 
prices fluctuate over time, we randomly generated 
the sales prices of pkt over range 1 2[ , ]k ka a  where 1

ka  and 
2
ka  are shown in Table 5.
We test two main sets of problems as follows.

– Problem Set A: (problem categories 1 to 4)
There are four problem categories, categories 1 to 

4, and each has seven cases with various demands. 

Figure 1. The hybrid solution 
approach and steps to evaluate 
the profil

Table 1. A raising schedule

t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1
1ty 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
1tx 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1
1tz 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
1
2ty 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1
2tx 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
1
2tz 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

 (a) The steps of the solution approach	              (b) The steps to evaluate the profit  
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The demand for test case n in problem categories 1–4 
is set by the formula dkt + 0.1(n – 4)dkt. Additionally, 
the values of (K, L, T) for problem categories 1–4 are 
shown in Table 6. The main purpose of the test prob-
lems in set A is to compare the performance of the 
proposed approach with those of other well-known 
solvers, LINGO and CPLEX, for problems of various 
sizes. The numerical results of problem categories 1 
to 4 are summarised in Table 7. 
– Problem Set B: (problem categories 5 to 7) 

There are three problem categories, categories 5 to 
7, and each has seven cases with the same demands as 
those of the 4th case in problem category 4. Problem 
categories 5 to 7 conduct the sensitivity analysis on 
the parameters g

kc , L and K and aim to investigate their 
impact on the computational results. More specifi-
cally, (i) for problem category 5, we set L = K = 4. In 
addition, we replaced g

kc  with η g
kc  where η varies from 

0.85 to 1.15 in increments of 0.05; (ii) for problem 
category 6, we set L = 2 to 8 for test cases 1 to 7; and 
(iii) for Problem category 7, we set K = 1 to 7 for 
test cases 1 to 7. The numerical results of problem 
categories 5 to 7 are summarised in Tables 8 to 10.

NUMERICAL RESULTS

In this paper, the symbol H/max(L,G) is used to 
evaluate the performance of the proposed approach 
(H) and the well-known solvers LINGO and CPLEX are 
assigned (L) and (G), respectively. More specifically, 

H/max(L,G) = 100%×{[profit by HA)/max(profit 
by CPLEX, profit by LINGO)-1]}

In addition, all solution approaches will terminate if 
the execution time exceeds four hours; in such cases, 
the best profits are reported. 

From Table 7, it can be seen that:
(1) For small-scale test cases in problem category 1, 

the CPLEX solver, the LINGO solver and the HA 
approach can produce nearly optimal solutions for 
all scale test cases. The gap of solutions for HA 
and the LINGO solver ranges only between 0.10% 
and 0.19%. Thus, the LINGO global solver, the 
CPLEX solver and the HA approach are all suit-
able approaches to solve the considered problem. 

(2) For the medium-scale test cases in problem cat-
egory 2, neither the CPLEX solver or LINGO solver 
could converge within 4 hours (14 400 seconds). 
Additionally, it was also observed that, in seven 
cases, the HA approach was superior to both the 

Table 4. The values of kc  and g
kc

k 1 2 3 4 5 6 7
ck 155.1 135.4 143.6 141.3 143.6 161.0 156.8 

g
kc 14.64 14.55 13.64 13.64 13.64 14.01 14.01 

Table 2. The values of 

km



k
1 2 3 4 5 6 7

1 6 000 4 900 4 900 3 900 4 900 5 500 4 100 
2 6 000 4 900 4 900 3 900 4 900 5 500 4 100 
3 7 500 6 100 6 100 4 900 6 100 6 800 5 200 
4 7 500 6 100 6 100 4 900 6 100 9 500 5 200 
5 10 500 8 600 8 600 6 900 8 600 9 500 7 300 
6 10 500 8 600 8 600 6 900 8 600 9 500 7 300 
7 12 000 9 800 9 800 7 900 9 800 10 900 8 300 
8 12 000 9 800 9 800 7 900 9 800 10 900 8 300 
9 13 500 11 000 11 000 8 800 11 000 12 300 9 300 

10 13 500 11 000 11 000 8 800 11 000 12 300 9 300 
11 21 000 17 200 17 200 13 700 17 200 19 100 14 500 
12 21 000 17 200 17 200 13 700 17 200 19 100 14 500 

Table 3. The values of 

kr  



k
1 2 3 4 5 6 7

1 0.930 0.960 0.960 0.855 0.930 0.915 0.855 
2 0.960 0.900 0.915 0.960 0.960 0.900 0.930 
3 0.915 0.900 0.960 0.900 0.900 0.900 0.915 
4 0.930 0.930 0.945 0.930 0.870 0.900 0.915 
5 0.870 0.900 0.960 0.890 0.880 0.900 0.945 
6 0.885 0.915 0.870 0.960 0.920 0.960 0.945 
7 0.960 0.945 0.960 0.930 0.890 0.945 0.900 
8 0.960 0.885 0.885 0.930 0.915 0.900 0.885 
9 0.930 0.915 0.930 0.900 0.910 0.960 0.915 
10 0.930 0.880 0.930 0.870 0.900 0.930 0.945 
11 0.900 0.890 0.870 0.915 0.885 0.900 0.930 
12 0.960 0.945 0.945 0.880 0.890 0.930 0.960 

Table 5. The range of sales prices per piece, 1
ka  and 2

ka

k 1 2 3 4 5 6 7
1
ka 239 196 200 160 252 340 246
2
ka 289 236 250 200 332 440 346

Table 6. Structure of problem categories 1–4

Category 1 2 3 4
K 2 2 3 5
L 5 6 12 12
T 18 26 26 52
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LINGO and CPLEX solvers for five cases. This 
implies that the HA approach is more promising 
and stable for solving medium-scale problems. 
Since the CPU time is only 21 or 22 seconds, the 
HA approach is much more efficient than both 
the LINGO solver and the CPLEX solver.

(3) For the larger-scale test cases in problem cat-
egory 3, the LINGO solver failed to report any 
solution within 4 hours (14 400 seconds); the prof-
its reported by the CPLEX solver within 4 hours 
were worse than those using the HA approach, 
and were 0.32% and 3.05%, respectively. The CPU 

Table 7. Computational results of problem categories 1–4

Problem 
Category

Cass
No

LINGO CPLEX HA Gap
profit time profit time profit time H/max(L,G) (%)

1

1 520 079 105 519 852 9 519 124 9 –0.18
2 594 403 75 594 382 11 593 250 10 –0.19
3 668 820 104 668 673 22 667 818 11 –0.15
4 743 073 95 742 999 7 741 971 11 –0.15
5 817 441 112 817 338 12 816 512 11 –0.11
6 891 675 73 891 277 7 890 595 11 –0.12
7 966 129 54 966 132 13 965 185 10 –0.10

2

1 903 331* 14 400 915 536* 14 400 915 688 21 0.02
2 1 046 530 14 400 1 037 117 14 400 1 040 873 22 –0.54
3 1 175 542 14 400 1 167 167 14 400 1 176 315 21 0.07
4 1 297 021 14 400 1 293 410 14 400 1 298 888 21 0.14
5 1 425 078 14 400 1 421 249 14 400 1 425 617 21 0.04
6 1 544 894 14 400 1 520 240 14 400 1 544 887 21 0.00
7 1 659 447 14 400 1 644 691 14 400 1 640 168 22 –1.16

3

1 –** 14 400 1 421 066 14 400 1 449 528 81 2.00
2 – 14 400 1 637 268 14 400 1 657 650 82 1.24
3 – 14 400 1 835 917 14 400 1 865 338 81 1.60
4 – 14 400 2 010 262 14 400 2 071 531 82 3.05
5 – 14 400 2 258 311 14 400 2 278 582 82 0.90
6 – 14 400 2 464 207 14 400 2 486 521 81 0.91
7 – 14 400 2 684 360 14 400 2 693 019 82 0.32

4

1 – 14 400 –** 14 400 6 960 083 670 –
2 – 14 400 – 14 400 7 944 859 674 –
3 – 14 400 – 14 400 8 978 135 674 –
4 – 14 400 – 14 400 9 922 681 679 –
5 – 14 400 – 14 400 10 870 148 681 –
6 – 14 400 – 14 400 11 871 746 716 –
7 – 14 400 – 14 400 12 900 194 693 –

*the best profit within 14400 seconds; **not available within 14400 seconds

Table 8. Sensitivity analysis for maturity feeding cost η g
kc  (problem category 5)

No η Profit R PC FCB FCM NCR
1 0.85 3 369 597 15 507 818 1 505 486 9 650348 982387 62 308
2 0.90 3 315 138 15 307 454 1 485 592 9 522 845 983 879 61 486
3 0.95 3 260 644 15 307 454 1 485 592 9 522 845 1 038 373 61 486
4 1.00 3 207 696 14 659 925 1 419 820 9 101 311 931 097 58 768
5 1.05 3 162 140 14 102 637 1 362 294 8 735 483 842 721 56 570
6 1.10 3 122 115 14 102 637 1 362 294 8 735 483 882 745 56 570
7 1.15 3 083 323 13 647 017 1 311 563 8 407 481 844 651 54 294

FCB – feeding cost of raising baby chicks; FCM – feeding cost of raising chicks to maturity; NCR – total number of 
chicks to raise; PC – purchasing cost; R – revenues
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time required for the HA approach is very stable at 
81 to 82 seconds, implying that the HA approach 
is more efficient than both the LINGO solver and 
the CPLEX solver for large-scale test cases.

(4) For the super-large-scale test cases in problem 
category 4, the LINGO solver and CPLEX solver 
could not report any solution within 4 hours 
(14 400 seconds). However, the HA approach 
converges and reports the best solution within 
670 to 716 seconds. This also implies that the 
HA approach is more efficient and effective than 
both the LINGO solver and CPLEX solver for 
super-large-scale test cases.

From Tables 8 to 10, it can be seen that:
(1) The numerical results for problem category 5 in 

Table 8 show that the profits and revenues (R) are 
decreasing with increasing η. For example, the 
profits are 3 369 597 and 3 083 323 for η = 0.85 
and 1.15, respectively. Additionally, Table 8 also 
implies that increasing feeding cost (η g

kc ) will 
reduce the total number of baby-chicks to raise 
(NCR). However, the farmer does not always 
reduce NCR. For example, the NCR is 61 486 for 
both cases 2 and 3. This implies that the farmer 

will only reduce NCR if the increase of η g
kc  exceeds 

a certain value. 
(2) The numerical results for problem category 6 

in Table 9 show that the profits, revenues (R), 
baby chick purchasing cost (PC), feeding cost of 
raising baby chicks (FCB), feeding cost of raising 
chicks to maturity (FCM) and total number of 
chicks to raise (NCR) increase as L increases. 
This implies that more henhouses will increase 
the profit and the number of chick types (NCT). 
For example, NCT = 1 for L = 2, while NCT = 3 
for L = 8.

(3) The numerical results for problem category 7 in 
Table 10 show that the profits and revenues (R) 
increase as K increases. This implies that having 
more types of chicken available will increase the 
profit and the number of chick types (NCT). For 
example, NCT = 1 for K = 2, while NCT = 2 for 
K = 8. More specifically, to maximise the profit, 
the farmer raises type-1 chicks when K ≤ 2, raises 
type-1 and type-3 chicks when 3 ≤ K ≤ 4, raises 
type-1 and type-5 chicks when K = 5 and raises 
chicks type-5 and type-6 when 6 ≤ K ≤ 7. This 
phenomenon indicates that the HA approach 

Table 10. Sensitivity analysis for available chick types K (Problem category 7)

No K Profit R PC FCB FCM NCR NCT
1 1 3 204 153 14 723 021 1 429 214 9 159 964 929 691 59 058 1
2 2 3 204 195 15 024 305 1 459 431 9 353 627 1 007 052 60 307 1
3 3 3 207 697 14 659 925 1 419 820 9 101 311 931 097 58 768 1, 3
4 4 3 207 696 14 659 925 1 419 820 9 101 311 931 097 58 768 1, 3
5 5 5 370 581 18 126 395 1 872 359 9 864 235 1 019 220 66 918 1, 5
6 6 6 691 503 18 717 335 1 641 769 8 871 650 1 512 414 58 496 5, 6
7 7 6 691 503 18 717 335 1 641 769 8 871 650 1 512 414 58 496 5, 6

For abbreviations’ explanation see Table 8; NCT – number of chick types adopted

Table 9. Sensitivity analysis for available henhouses L (Problem category 6)

No L Profit R PC FCB FCM NCR NCT
1 2 2 103 531 8 613 192 809 959 5 191 098 508 605 33 469 1 
2 3 2 699 909 11 519 643 1 099 272 7 046 889 673 572 45 522 1, 3
3 4 3 207 696 14 659 925 1 419 820 9 101 311 931 097 58 768 1, 3
4 5 3 651 106 17 357 655 1 875 968 1 692 515 1 150 914 70 919 1, 3
5 6 3 949 274 19 003 622 1 875 968 12 038 882 1 139 498 78 500 1, 3 
6 7 4 420 258 21 019 412 2 080 422 13 190 167 1 328 565 87 225 1, 2, 3
7 8 4 818 254 23 253 041 2 324 311 14 621 676 1 488 801 97 298 1, 2, 3 

For abbreviations’ explanation see Table 8; NCT – number of chick types adopted
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is effective in choosing the best strategies for 
maximal profit.

CONCLUSION

In this paper, we proposed a new mathematical model 
to investigate the problem of chicken production, in-
cluding production planning and harvesting schedule 
for chicken farmers. Due to the high computational 
complexity of the problem, the proposed model can-
not be solved by general commercial software when 
the problem size becomes large owing to, e.g., the 
planning period and the number of henhouses. To 
overcome this problem, in this paper, a hybrid com-
putational approach has been developed to obtain 
comprise solutions for farmers. The main results are 
summarised as follows.
(1) The proposed approach is superior to the LINGO 

solver and the CPLEX solver in terms of solution 
quality and computational time for larger problems. 
The proposed approach can generate compromise 
raising decisions for practically-sized problems for 
which the LINGO solver and the CPLEX solver 
cannot produce feasible solutions within a reason-
able frame of time. 

(2) The numerical results of sensitivity analysis have 
shown the impact of various parameters on the 
considered problem, including the cost to feed 
to maturity, the number of henhouses and the 
number of chicken types. 

(3) The numerical results have shown that the proposed 
model and approach can support chicken farmers 
in selecting proper henhouses in which to breed 
chickens, and in optimally scheduling production 
and harvesting to increase profits.
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