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Abstract: To order to raise chickens for meat, chicken farmers must select an appropriate breed and determine how many
broilers to raise in each henhouse. This study proposes a mathematical programming model to develop a production
planning and harvesting schedule for chicken farmers. The production planning comprises the number of batches of chic-
kens to be raised in each henhouse, the number of chicks to be raised for each batch, what breed of chicken to raise, when
to start raising and the duration of the raising period. The harvesting schedule focuses on when to harvest and how many
broilers to harvest each time. Our aim was to develop proper production and harvesting schedules that enable chicken far-
mers to maximise profits over a planning period. The problem is a highly complicated one. We developed a hybrid heuristic
approach to address the issue. The computational results have shown that the proposed model can help chicken farmers to
deal with the problems of chicken-henhouse assignment, chicken raising and harvesting, and may thus contribute to inc-

reasing profits. A case study of a chicken farmer in Yunlin County (Taiwan) was carried out to illustrate the application of

the proposed model. Sensitivity analysis was also conducted to explore the influence of parameter variations.
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Poultry farming describes the raising of domesti-
cated birds such as chickens, ducks, geese, turkeys,
guinea fowl, pigeons, quails and pheasants. Among
these, and in the current market, chickens have the
highest economic value. The greatest difference be-
tween farming products and industrial products
lies in the restrictions due to the biological charac-
teristics inherent in a living organism. Due to the
growing process, poultry farming products cannot
be massively produced in a few days and it takes, for
example, about six to seven weeks to raise a white
broiler chicken to maturity. In order to raise chick-
ens for meat, chicken farmers must determine the
breed, quantity and stocking density in each of their
henhouses during the planning phase. According to
a survey of chicken farmers in Taiwan, feed costs for
raising a broiler account for 64.8% of total production
costs indicating that the direct costs are very high
compared to other costs. To reduce feeding costs,
chicken farmers attempt to sell the mature chickens
to market in a timely fashion. Because the market
demand and sale price of chickens usually fluctuates
over time, the sale price at the point when chickens
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are sold to market is usually different than the price
when the chicken production was initiated. Thus, poor
chicken production planning may produce products at
an unsuitable time and result in higher costs and poor
revenues. In order to increase profits, it is necessary
for chicken farmers to properly plan the raising and
harvesting of different chicken breeds in respective
henhouses to maximise their profit.

To help chicken farmers to deal with this problem,
this paper investigated chicken production in multi-
henhouses and multiple types of chicken and aimed to
develop proper production and harvesting schedules
to maximise profits over a given planning period. The
production planning comprises the number of batches
of chicken to be raised in each henhouse, and the
decisions of what breed of chicken to raise, when to
start raising and the duration of the raising period for
each raising batch. The harvesting schedule focuses
on the problems of when to harvest and how many
chickens to harvest. This paper simultaneously deals
with the decision problems associated with produc-
tion quantity, raising area selection and harvest for
chicken raising.
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LITERATURE REVIEW

In the past, most production planning-related
research has focused on problems of the livestock
industry. Stygar and Makulska (2010) pointed out
that mathematical models were usually used to derive
production planning decisions for livestock manage-
ment. The methodology used to generate these models
can be divided into optimisation approaches (Wang
and Leiman 2000; Rodriguez 2009; Yu et al. 2009;
Moghaddam and DePuy 2011; Ohlmann and Jones
2011; Rodriguez-Sanchez 2012), and simulation ap-
proaches (Coleno and Duru 1999; Yu and Leung 2005;
Gradiz et al. 2007; Villalba et al. 2010). Among these
reports, Rodriguez-Sanchez et al. (2012) formulated a
linear programming model to explore sow production
planning problems by considering pig equipment,
survival rate, viviparous rate and the number of pig
houses. Kristensen and Sollested (2004) applied the
multi-level hierarchical Markov process to develop a
model to determine the time to sell pigs and purchase
piglets. Villalba et al. (2010) proposed a stochastic
simulation model to address herd breeding problems.
Crosson et al. (2006) developed a linear program-
ming model to investigate beef production problems.
Ohlmann and Jones (2011) proposed a mixed-integer
linear programming model to determine the optimal
selling weight for piglets. Pathumnakul et al. (2009)
addressed the optimal breeding and harvesting times
for shrimps. Yu and Leung (2005) were also concerned
with shrimp harvesting over multiple periods and
ponds: a linear programming model was developed
to solve the problem. Tian et al. (2000) investigated
the production scheduling problem for shrimps. In
their model, the size and number of ponds, shrimp
stocking density and shrimp survival rate are consid-
ered. Forsberg (1996) were interested in determining
the optimal breeding and harvesting time for fish.
Bjerndal (1988) focused on fish harvesting problems
and Hern (1994) addressed the harvesting problems
in the farming industry.

The literature mentioned above has mostly focused
on developing production planning for shrimps, pigs
and cattle. The harvesting problem and the raising
area selection/allocation problem were rarely dis-
cussed. Pla-Aragonés (2005) formulated farming
allocation as a semi-Markova decision problem, and
used a simulation approach to solve the proposed
model. Coleno and Duru (1999) investigated the
distribution of cow grazing areas and forage harvest
dates. McCarthy et al. (1998) discussed land allocation

for grazing and farming cattle. Engle (1997) proposed
a linear programming model to discuss land alloca-
tion for fish and agriculture products. Engle et al.
(2010) dealt with the production planning problem in
relation to catfish. Rupasinghe and Kennedy (2006)
discussed the feeding size problem for barramundi.
Instead of a single-batch harvesting, Yu et al. (2006)
proposed a partial harvesting schedule to investigate
a production planning problem with a single cycle
for culture species. They also derived necessary
conditions to efficiently determine a discrete partial
harvesting strategy.

Many studies have proposed strategies for deal-
ing with the problems of animal husbandry and the
industry’s production planning, but few have simul-
taneously dealt with the problems of production
quantity, raising area selection and harvest for the
chicken industry. This study was aimed at develop-
ing an integer programming model to investigate
these three problems for chicken farmers raising a
variety of chicken types in a number of different-
sized henhouses. A real case in Yunlin County in
Taiwan was also investigated. This study derived
decisions by applying this model to maximise profits
in a scheduled period with the purpose of help-
ing chicken farms complete proper production and
harvesting planning. Sensitivity analysis was also
conducted to explore the impact of parameter vari-
ations such as cost to feed to maturity, the number
of henhouses and the number of chicken types on
the computational results.

MODEL AND ASSUMPTION

A chicken farmer runs a farm business raising
K-types of chickens in L henhouses. Baby chicken
type-k is purchased from a supplier at a cost of ¢}
dollars per unit and needs n™ weeks of feeding
to reach maturity status. Based on considerations
related to chicken meat quality and raising time,
baby chicken type-k is raised for at most n,"* weeks.
Depending on the breeding age, the amounts of feed
are different. The overall cost of feeding a type-k
chick to maturity is roughly ¢, dollars. After the age
of maturity, the cost of feeding a type-k chicken is
cf dollars per week.

The farmer does not raise more than one type of
chicken in a henhouse at the same time. The chick-
ens’ growth and survival rates will decrease if there
are too many chickens in a henhouse. Thus, each
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henhouse has a farming capacity/limit for different
types of chicks. The farming capacity for chicken
type-k raised in henhouse /, g;, cannot exceed m,
chicks. During the breeding periods, chickens may
die due to illness and other factors. The ratio of the
number of chickens scheduled to be harvested to
the number of saleable chickens of chicken type-kin
henhouse / is denoted by r,. Suppose that it is planned
that o,, type-k chickens will be harvested at the end
of period ¢ from henhouse ¢. Then, the expected
saleable chickens are 7,0, In addition, a new batch
of chickens cannot be raised in a henhouse before
the henhouse is cleaned. The time required to clean
a henhouse is b, weeks when its previous breeding
chicken is type-k.

Demand for type-k chicken in week ¢ is assumed to
be d,,. The sales prices for all chickens fluctuate over
time. The sales price for type-k chicken in week ¢ is
estimated to be p,,. The chicken farmer expects to
make a T-week production plan to maximise his/her
profit. The notation is summarised as follows.

Parameters

K the number of types of chicken

L  the total number of henhouses

T  the total planning period (weeks)

b, thetime needed to clean a henhouse after breed-

I

ing chicken type-k
¢, the unit purchasing cost of baby chick type-k
¢, theoverall cost of feeding a type-k chick to reach

maturity
¢ the unit cost of feeding a type-k maturity chick
per week
d,, thedemand for chicken type-kin week tin market
4

m, the breeding capacity/limit for chick type-k in
henhouse ¢

n"" the minimum breeding weeks of a type-k chick

n™ the maximum breeding weeks of a type-k chick

P, theunitsales price for a type-k chicken in week ¢

r,  the survival rate (%) for a type-k chick in hen-
house ¢

B averylarge number

s,, the number of saleable type-k chickens in week ¢

v, theremaining number of mature type-k chickens
raised in henhouse / at the start of week ¢

Decision variables

x, =1 if type-k chicken is breeding in henhouse ¢
in week ¢ and zero otherwise

y,, =1 if the raising of a batch of type-k chickens
begins at the start of week ¢ in henhouse ¢ and
zero otherwise
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z,, =lifthe type-k chicken that is raised in henhouse
¢ can be harvested at the end of week ¢ and zero
otherwise

g, thenumber of type-k baby chicks that are raised
from the start of week ¢ in henhouse ¢

o, the harvest number of type-k chickens from

henhouse ¢ at the end of week ¢

Mathematical model

Before developing the mathematical model, we
use the following example to express the relation-
ship among the values of x;, y,, and z,,. Consider a
T = 18 period raising plan with two types of chick
(K = 2) and a henhouse (L = 1), namely henhouse 1.
Suppose that it requires three periods to raise a baby
chick to reach maturity and one period to clean the
used henhouse for both chicken types. The maximum
breeding period for both chickens is assumed to be
six periods. Table 1 illustrates a feasible raising sched-
ule and shows that no chick is raised before period
three. The value of y!, = 1 means that at the start of
period four, a batch of type-1 baby chicks is raised.
The batch of chicks is raised from periods four to
eight (x;, =1 for 4 < £ < 8). At the end of period six,
the batch of baby chicks reaches maturity and can be
harvested. The harvestable periods are from period
six to period eight (z;, =1for 6 < ¢ < 8). Thereafter, the
henhouse is cleaned in period nine. Until period 11,
the farmer raises a batch of type-2 chicks (y;,, =1).
This batch of chicks is raised until period 16 (x}, =1
for 11 < ¢ < 16). The batch of baby chicks reaches
maturity at the end of period 13 and can be harvested
over periods 13-16 (z), =1 for 13 < ¢ < 16).

The purpose of the problem is to maximise the
expected profit by determining the values of x,,, y;,
z,, g, and o,,. The objective function is composed of
sales revenues (R), costs of purchasing baby chicks
(PC), food costs of feeding baby chicks to maturity
(FCB) and costs of feeding chickens after maturity
is reached (FCM). Let F be the total expected profit.
Then, we wish to:

F=3.2. D Do D B
max I+= 2 1 Zu15uPu ket Lt 1 L1 81
K L T K L Ty
p— - £ g
Zk:lZ/,:lZ/:] g/czck—zkﬂz/:lz,:l VieCi (1)

It requires 1" weeks to raise a type-k baby chick
to reach maturity. Thus, a type-k baby chick raised
from the start of week ¢ —n,™ will reach maturity at

week t — 1. Accordingly, the relationship between the



Agric. Econ. — Czech, 64, 2018 (7): 316-327 Original Paper
https://doi.org/10.17221/255/2016-AGRICECON
number of mature type-k chickens raised in henhouse Xtz € {013,V k, 0.t (22)

¢ at the start of week ¢, v;, and the number of type-k
baby chicks raised from the start of week ¢ in henhouse
¢, g, can be expressed by Equation 2.

.o, Yk, 0 t<n™
v, = .
kt ! ¢ 4 min
Va1 8 ymin —0,, .,V k, [, t>n

(2)

Suppose that it is planned to harvest o,, type-k chick-
ens from henhouse ¢ at the end of week t. Since the
survival rate for type-k chickens raised in henhouse ¢
is 7/, the expected sales amount is 7, o,,. Thus, the
number of saleable type-k chickens in week ¢, s, is
expressed by Equation 3.

S, = Z[:l 0,1,V k,t (3)
Since s,, cannot exceed demand, we have Constraint (4).
s, <d,, Ykt (4)

In addition, we have the following constraints:

S = %02 Vb Y kot > by (5)
Xy =vip> VK, (6)
Vi, <x, Yk, 0t (7)
Vi, X, +x,f’H <2, Vk,l,t>1 (8)
Vi 2%, —x,f’tfl, Yk, lt>1 9)
S =Y ki (10)
D s Z 2 2 (11)
Z;':pnj“m x,ft, - n,‘c"i“ < zftB,V k,0,t> n,’f’i" (12)
- Ziv:pn;’“ Xpo 20, k, 0,8 > n™ (13)
2o SV BNV kUt (14)
S0 2,V k0t (15)
g, <m, Yk, (16)
> <LV Ot (17)
x B>v, ,V k(1 (18)
z, <x,,V k0ot (19)
0, <z, B,V k,(,t (20)
o, <vi, + g;!tin;m” Nk, 0> n,‘:“i“ (21)

Equation 1 is the objective function (total profit) to
be maximised. Equation 2 expresses the number of
mature type-k chickens raised in henhouse ¢ at the
start of week t. Equations 3 and 4 give the sales amount
in week . Constraint (5) ensures that there are enough
clearing periods before the raising of a batch of chicks
begins. Constraints (6) and (7) establish the relation-
ship between x;, and y,, to ensure that a batch of type-k
baby chicks is raised in period ¢ if chick type-k is raised
in period ¢. Constraint (8) confines that x,,_, = 0 if the
raising of the type-k chick starts in henhouse ¢ (y,, =1).
That is, if y,, =1, then x,,_, =0. Note that y, <x, in
Constraint (7) ensures x,, =1if y,, = 1. Thus, if y,, = 1,
thenx,, ,=0dueto y, +x,, +x,,, <2inConstraint (8).
Constraint (9) confines the relationships of y,, x;, and
x, ., when no new batch of chicks are raised from period
t (y,, =0). Thus, one of the following two situations will
occur: (i) a batch of type-k chicks is still being raised
in period ¢, that is x,ft =1, or (ii) no chick is raised in
this period, that is x,, = 0. In case (i), since x;, =1, we
havex, , , =ldueto y, =0>x, —x,,_,.In case (ii), since
x,, =0, Constraint (8) still holds for x, ,_, =0orx,,, =1.
Constraint (10) ensures that there is enough time to
breed chickens to reach maturity before the end of
the planning period. Constraints (11) and (12) ensure
harvest if and only if the minimum number of breed-
ing weeks has been reached. Constraint (13) ensures
that the raising weeks cannot exceed the maximum
number of breeding weeks. Constraints (14) and (15)
ensure that a new batch of baby chicks is raised if a
raising decision is made. Constraint (16) shows that
the number of chicks raised cannot exceed the breed-
ing capacity. Constraint (17) ensures that at most one
type of chicken is raised in a henhouse. Constraint
(18) ensures that if there are chicks in a henhouse then
these are raised. Constraint (19) shows that no chicken
can be harvested if no chicken is raised. Constraint
(20) ensures that no chicken is harvested during the
non-harvest period. Constraint (21) determines that
the number of chickens harvested cannot exceed the
number of chickens raised. Constraint (22) shows the
ranges of variables x;, y,, and z,,.

APPROACH

A raising plan consists of several chick-raising deci-
sions. Since a raising decision in a previous stage will
affect the subsequent ones, the considered raising plan
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problem is a constrained combinatorial optimisation

problem. Basically, the complexity of a combinato-

rial optimisation problem is highly influenced by the

number of decision variables. In the chick raising

problem, the decision variables include x;, y;,, z,, g,,

and o,,. The total number of decision variables goes

up to 5*K*L*T. For example, if T =26, L =6, K =5,

then the farmer has to deal with a combinatorial prob-

lem with 3900 decision variables. Optimally solving

this problem in a reasonable computational time is

intractable, especially for larger-scale problems. Thus,

a problem-solution approach that can give compro-

mise solutions within a reasonable computational

time is important. Several commercial optimisation

software programs, such as LINGO solver and CPLEX

solver can be adopted to solve this problem. However,

computational experiences show that, for larger-scale

problems, these commercial optimization software

programs cannot guarantee feasible solutions within

areasonable timeframe. Thus, we developed a hybrid

heuristic approach to generate comprise solutions

within a reasonable time in this paper.

Next, we introduce the following notations to the

problem-solution approach.

TD the total unsatisfied demands

t* the starting time for the raising of a batch of
baby chicks

t* the ending time for a batch of raised chicks

d;, the unarranged products of demands for type-k
chickens in period ¢

F! the remaining capacity to raise type-k chicks in
henhouse ¢ at the start of period ¢

h,f{/. =1 if type-k chickens can be raised in henhouse
¢ at the start of period ¢ and can produce a posi-
tive profit for harvesting in period j, and h,ftj:O
otherwise

A =(k,(,.t), the raising pair for the n" raising

decision

selection pool for action 4,

«. the harvestable periods for type-k chicks raised

from period ¢

<0

The approach is established on a batch-by-batch
raising concept. For each raising decision, the ap-
proach determines what kind of chick to raise, where to
raise and when to start to raise. Suppose 4, = (k,,/,,t,)
is the nth raising decision, Then, a batch of type—kn
baby chicks is scheduled to be raised in henhouse ¢,
from the start of period ¢, . In addition, the approach
will also determine how many to raise and when to
harvest.
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The raising decision of A  is selected from the
selection pool Q. The generation of selection pool
Q is described in the pool generation procedure. The
determination of the raising pair is described in the
raising combination procedure. The raising and the
harvesting number are described in the allocation
procedure. The status update procedure renews the
raising status after each raising decision. The proposed
solution approach performs these four procedures
repeatedly until all henhouses are unavailable or all
demands are satisfied.

Below, we present the solution approach in detail.
First, let R,f,j be the expected profit from the raising
of a type-k chicken in henhouse ¢ from the start of
period ¢ and harvested at the end of period j. R,f;j is
defined by Equation 23.

b . min
P =6 —¢—(j—t—-n
0 _ ]
R = A

ktj

+1)cg

0 otherwise

Vi t<T-n"™,jeV¥,

(23)
otherwise
where
W, ={jt+n™ 1< j<min{T,t+n™ -1},V ¢ (24)
The periods of £ +n"" —1and min{T,¢+n™* —1} are,

respectively, the earliest period and latest period to
harvest type-k chickens raised from period ¢. The
initial values of h,ftj, F!,d}, TD, x,, yi» z» &5, and o,
are set as follows.

K T, , . ‘

(A) TD = Zk:thZI dkt and x/:t :ylit = Z/it :ng = O:t = 0
(B)d,, =d,,,VY k,t

(C) F) =m ¥ k,£,t <T —nj™ +1 and F,, = 0 otherwise
(D) Iy, = 1if R, > 0 and h, = 0 if R, <0.

In (D), h,fU. is set to zero since harvesting in period j
for type-k chicks raised from period ¢ cannot gener-
ate positive profit.

(1) Pool generation procedure
For each raising batch, a farmer must determine
what kind of chick to raise, where to raise and when
to start to raise. The pool generation procedure is
used to produce a candidate raising pair (k,/,7). At
the n™ allocation, we compute the profit value of
each possible raising pair of (k,¢,¢) with F, > 0 us-
ing Equation 25.
Uy =D, diR, NV k0t

Jje¥y

(25)
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We refer to the raising pair (k,¢,¢) corresponding
to the /" highest positive value in U, s as set A, and
setQ, asQ =Q {A ,A, A}

nl’ *"n2’

(2) Raising combination procedure

According to the selection pool and the values of
a chromosome (a solution pattern) (v, v,, ..., V),
the raising combination procedure is used to select
the raising decision A from pool Q  to determine
what kind of chick to raise, where to raise and when
to start to raise at the n'" raising plan. The solution
will stop raising if U,, <0 for all k, ¢ and ¢.

The selection rule is based on the element appear-
ing in a chromosome which is codified by KL distinct
integer numbers within the range of [1, 3]. For ex-
ample, suppose that the values of a chromosome are
(Vi Vos s Vi) = (1, 3,2,1, 1,2, 1, 2, 1) and the selec-
tion pool at the third raising batch is Q, = {(2, 3, 1),
(3,1,2), (2,2, 1)}. In this case, since the number ap-
pearing in the third position of the chromosome is
vy = 2, we set the raising combination A, at (3,1, 2).
That is, we start to raise type-3 chickens from period 2
in henhouse 1.

The number of pairs in O may be less than the
value of v,. We use the following rule to deal with

is less than v , we
{(2, 3 1),
(3,1,2)}and v, = 3 then, since ||Q” || —2 we update
v, =2 and set A, = (3, 1, 2) to obtainy;, =1.

At the n' raising decision, if Q,

Allocation procedure

Suppose that a decision of 4, = (k,/,¢) is made in
the n'" raising decision. The procedure solves the
problems of how many chicks to raise and when to
harvest according to the following steps.

G) F, —min{dy, /., F,}

H) TD TD min{d;. /7., F.}

I) Ift'+1=¢, +n,‘:“"—1 let ¢'=¢'+1and go back to
Step (C), otherwise ¢t =¢"'.

(A) Let y, =land x, =1for¢, <t'<t +n" -1
(B) Let t'=max{l,z, +n™ -1}

(C)If h,,.=0or F, =0 go to Step (])

(D) x;,, =1, z,,, =1 and o, =min{d},. /1., F.}

(E) g, = gkz+m1n{d /sy

(F) d’ —d’ F,ifd].>F,and d, =0ifd] <F,
(

(

(

(J) Raising allocation for the #n™ allocation steps

In Step-A, y, =1 since a batch of type-k chicks
is raised in henhouse ¢ at the start of period ¢. The

batch of chicks cannot be sold before they reach
maturity and they must be raised during periods
t<t'<t+n"™ —1Thus, x,, =1fort <t'<t+n" —1.The
allocation procedure for the n'" allocation reports the
number of g,, type-k chickens to raise in henhouse ¢
over period ¢° = ¢ to period £°. The harvest number

in period ¢', t+n™ —1<¢'< ¢ is oj,.

(4) Status update procedure
To guarantee that the produced solutions are fea-
sible solutions (all constraints are satisfied), we have
to renew the parameter h,fg. . Suppose the raising of
type-k chickens has been scheduled for periods #
to ¢°in henhouse ¢, then hljtj are updated according
to the following rules.
(A) Since there is not enough time to raise a type-
k chick from the start of period
—b, —n™ +1},1
rity before period £’ — bk, we set hﬁtt. =0 forall &, ¢/,
tefilmax{l,t' —b, —n™ +1}<i <t —b}.

(B) Since henhouse ¢ is occupied from period # to

t € {max{l,¢' —b,} to reach matu-

t¢, type-k chicks cannot be raised from the start of
period t € {t' —=b,,min(T,t° +b,)}. Thus, k. =0 for
allk, ¢', t e {i| max{l,’ =b, } <i <min(T,t° +b,)}.

(C) Note that henhouse ¢ is occupied from period #
to t°. Type-k chicks cannot be harvested in period
t"e{t’ —b,,min(T,t° +b,)}, Thus, h,, =0 for all k,
L, t'eli|t’ =b, <i<min(T,t° +b,)} .

(D) Note that henhouse / is occupied from period #*
to t°. Type-k chicks cannot be raised at the start of
period 1 < £ < £° and harvested after period £ - b,.
Thus, "k, =0 for all k,
1<t<t—b,t'eli|t'-b <i<T}.

(E) Let F!=0if Z =0

(F) Let TL = TL — 1 lfz ,:1ka =0.

The outline of the proposed solution approach is
depicted in Figure 1. Figure 1a shows the outline of
the solution approach and Figure 1b shows the steps

involved in evaluating the profit for each chromo-
some (solution pattern).

TEST PROBLEMS

We tested two main types of problem to evaluate
the performance of the proposed approach. The cor-
responding parameters are based upon a company
in Taiwan. This company has L = 12 henhouses and
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G
'

Initialized a population of solution

Start to evaluate the profit
of a solution pattern,
(V1,72 Vi)

Figure 1. The hybrid solution
approach and steps to evaluate
the profil

patterns

-

Use pool generation procedure to produce
selection pool £, for the

h

raising batch

A 4
Evaluate profit of each solution
pattern (v, Va...Vi)

¥

If selection pool €2,
15 emply

Update best solution found if a
better profit is found

Use mising combination procedure to select a
raising pair (& L¢) from €,

¥

)

Perform cloning, parent sclection,

Use allocation procedure to determine x,y,z,0
and g by allocation procedure

nm=n+l

crossover and mutation operators
to generate a new population of

|

solution patterns

Use status update procedure 1o renew raising
status

(a) The steps of the solution approach

breeds seven types of chicken. The raising capacity
for type-k chicks in henhouse /7, m,f, is shown in Table
2. The survival rate for the seven types of chicken
in each henhouse, 7, are roughly over [0.855, 0.96]
and are shown in Table 3. The time needed to grow
type-k chickens to maturity is 7, =13 weeks. The
maximum breeding time for these seven types of
chicken must be no larger than n™ = 20 weeks. The
cost of breeding baby chicks to maturity, c¢,, and
the weekly cost of breeding mature chickens, ¢f,
are estimated and shown in Table 4. Before a new
batch of chickens can be raised in a henhouse, the
henhouse must be cleaned, a process which requires

Table 1. A raising schedule

Un-met demands and
available raising capacity

No

exist

Fy

k.
End

(b) The steps to evaluate the profit

one week. At maturity, meat weights of the seven
types of chicken can reach up to 3.3, 2.7, 2.7, 2.16,
2.7, 3.0 and 2.228 kg, respectively. The average sales
prices per chicken for the seven types of chicken
are 264.0, 216.0, 225.0, 180.0, 292.5, 390.0 and 296.4
(NTS$ dollars), respectively. However, since the sales
prices fluctuate over time, we randomly generated
the sales prices of p,, over range [a,,a;] where a, and
a; are shown in Table 5.

We test two main sets of problems as follows.
— Problem Set A: (problem categories 1 to 4)

There are four problem categories, categories 1 to
4, and each has seven cases with various demands.

t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
e 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x,, 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
h 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
X, 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
2z, 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
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Table 2. The values of m;,

k

~

1 2 3 4 5 6 7

6000 4900 4900 3900 4900 5500 4100
6000 4900 4900 3900 4900 5500 4100
7500 6100 6100 4900 6100 6800 5200
7500 6100 6100 4900 6100 9500 5200
10500 8600 8600 6900 8600 9500 7300
10500 8600 8600 6900 8600 9500 7300
12000 9800 9800 7900 9800 10900 8300
12000 9800 9800 7900 9800 10900 8300
13500 11 000 11 000 8 800 11000 12300 9 300
13500 11 000 11 000 8800 11000 12300 9 300
21 000 17 200 17 200 13 700 17 200 19 100 14 500
21 000 17 200 17 200 13 700 17 200 19 100 14 500

O 0 NN Ul W N

—_ = =
N = O

Table 3. The values of 7

k

1 2 3 4 5 6 7

1 0.930 0.960 0.960 0.855 0.930 0.915 0.855
2 0.960 0.900 0.915 0.960 0.960 0.900 0.930
3 0.915 0.900 0.960 0.900 0.900 0.900 0.915
4 0.930 0.930 0.945 0.930 0.870 0.900 0.915
5 0.870 0.900 0.960 0.890 0.880 0.900 0.945
6 0.885 0.915 0.870 0.960 0.920 0.960 0.945
7 0.960 0.945 0.960 0.930 0.890 0.945 0.900
8 0.960 0.885 0.885 0.930 0.915 0.900 0.885
9 0.930 0.915 0.930 0.900 0.910 0.960 0.915
10 0.930 0.880 0.930 0.870 0.900 0.930 0.945
11 0.900 0.890 0.870 0.915 0.885 0.900 0.930
12 0.960 0.945 0.945 0.880 0.890 0.930 0.960
Table 4. The values of ¢, and ¢f

k 1 2 3 4 5 6 7
C 155.1 1354 143.6 141.3 143.6 161.0 156.8
c¢;  14.64 14.55 13.64 13.64 13.64 14.01 14.01

Table 5. The range of sales prices per piece, @, and a;

k 1 2 3 4 5 6 7

a, 239 196 200 160 252 340 246
a; 289 236 250 200 332 440 346

Table 6. Structure of problem categories 1-4

Category 1 2 3 4
K 2 2 3 5
L 5 6 12 12
T 18 26 26 52

The demand for test case n in problem categories 1-4
is set by the formula d,, + 0.1(n — 4)d,,. Additionally,
the values of (K, L, T) for problem categories 1-4 are
shown in Table 6. The main purpose of the test prob-
lems in set A is to compare the performance of the
proposed approach with those of other well-known
solvers, LINGO and CPLEX, for problems of various
sizes. The numerical results of problem categories 1
to 4 are summarised in Table 7.

- Problem Set B: (problem categories 5 to 7)

There are three problem categories, categories 5 to
7, and each has seven cases with the same demands as
those of the 4th case in problem category 4. Problem
categories 5 to 7 conduct the sensitivity analysis on
the parameters ¢f, L and K and aim to investigate their
impact on the computational results. More specifi-
cally, (i) for problem category 5, we set L = K = 4. In
addition, we replaced ¢f with nci where n varies from
0.85 to 1.15 in increments of 0.05; (ii) for problem
category 6, we set L = 2 to 8 for test cases 1 to 7; and
(iii) for Problem category 7, we set K = 1 to 7 for
test cases 1 to 7. The numerical results of problem
categories 5 to 7 are summarised in Tables 8 to 10.

NUMERICAL RESULTS

In this paper, the symbol H/max(L,G) is used to
evaluate the performance of the proposed approach
(H) and the well-known solvers LINGO and CPLEX are
assigned (L) and (G), respectively. More specifically,

H/max(L,G) = 100%x{[profit by HA)/max(profit
by CPLEX, profit by LINGO)-1]}

In addition, all solution approaches will terminate if
the execution time exceeds four hours; in such cases,
the best profits are reported.

From Table 7, it can be seen that:

(1) For small-scale test cases in problem category 1,
the CPLEX solver, the LINGO solver and the HA
approach can produce nearly optimal solutions for
all scale test cases. The gap of solutions for HA
and the LINGO solver ranges only between 0.10%
and 0.19%. Thus, the LINGO global solver, the
CPLEX solver and the HA approach are all suit-
able approaches to solve the considered problem.

(2) For the medium-scale test cases in problem cat-
egory 2, neither the CPLEX solver or LINGO solver
could converge within 4 hours (14 400 seconds).
Additionally, it was also observed that, in seven
cases, the HA approach was superior to both the
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Table 7. Computational results of problem categories 1-4

Problem  Cass LINGO CPLEX HA Gap
Category No profit time profit time profit time H/max(L,G) (%)
1 520 079 105 519 852 9 519 124 9 -0.18
2 594 403 75 594 382 11 593 250 10 -0.19
3 668 820 104 668 673 22 667 818 11 -0.15
1 4 743 073 95 742 999 7 741 971 11 -0.15
5 817 441 112 817 338 12 816 512 11 -0.11
6 891 675 73 891 277 7 890 595 11 -0.12
7 966 129 54 966 132 13 965 185 10 -0.10
1 903 331* 14 400 915 536* 14 400 915 688 21 0.02
2 1 046 530 14 400 1037 117 14 400 1 040 873 22 -0.54
3 1175 542 14400 1167 167 14 400 1176 315 21 0.07
2 4 1297 021 14400 1293 410 14 400 1 298 888 21 0.14
5 1425078 14 400 1421 249 14 400 1425617 21 0.04
6 1 544 894 14 400 1520 240 14 400 1 544 887 21 0.00
7 1 659 447 14 400 1644 691 14 400 1640 168 22 -1.16
1 —Ex 14 400 1421 066 14 400 1449 528 81 2.00
2 - 14 400 1637 268 14 400 1 657 650 82 1.24
3 - 14400 1835917 14 400 1 865 338 81 1.60
3 4 - 14400 2010 262 14400 2071531 82 3.05
5 - 14400 2258 311 14 400 2278 582 82 0.90
6 - 14 400 2 464 207 14 400 2486 521 81 0.91
7 - 14 400 2 684 360 14 400 2693 019 82 0.32
1 - 14 400 —* 14 400 6 960 083 670 -
2 - 14 400 - 14 400 7 944 859 674 -
3 - 14400 - 14 400 8978 135 674 -
4 4 - 14400 - 14400 9922 681 679 —
5 - 14 400 - 14 400 10 870 148 681 -
6 - 14 400 - 14 400 11 871 746 716 -
7 - 14 400 - 14 400 12 900 194 693 -

*the best profit within 14400 seconds; **not available within 14400 seconds

LINGO and CPLEX solvers for five cases. This  (3) For the larger-scale test cases in problem cat-

implies that the HA approach is more promising
and stable for solving medium-scale problems.
Since the CPU time is only 21 or 22 seconds, the
HA approach is much more efficient than both

egory 3, the LINGO solver failed to report any
solution within 4 hours (14 400 seconds); the prof-
its reported by the CPLEX solver within 4 hours
were worse than those using the HA approach,

the LINGO solver and the CPLEX solver. and were 0.32% and 3.05%, respectively. The CPU

Table 8. Sensitivity analysis for maturity feeding cost nc¢f (problem category 5)

No n Profit R PC FCB FCM NCR
1 0.85 3369 597 15507 818 1 505 486 9 650348 982387 62 308
2 0.90 3315138 15 307 454 1485592 9522 845 983 879 61 486
3 0.95 3 260 644 15 307 454 1485592 9 522 845 1038373 61 486
4 1.00 3207 696 14 659 925 1419 820 9101 311 931 097 58 768
5 1.05 3162 140 14102 637 1362 294 8 735 483 842 721 56 570
6 1.10 3122115 14102 637 1362 294 8 735 483 882 745 56 570
7 1.15 3 083 323 13 647 017 1311 563 8 407 481 844 651 54 294

FCB - feeding cost of raising baby chicks; FCM - feeding cost of raising chicks to maturity; NCR — total number of

chicks to raise; PC — purchasing cost; R — revenues
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Table 9. Sensitivity analysis for available henhouses L (Problem category 6)

No L Profit R PC FCB FCM NCR NCT
1 2 2103 531 8613 192 809 959 5191 098 508 605 33 469 1

2 3 2 699 909 11 519 643 1099 272 7 046 889 673 572 45 522 1,3
3 4 3207 696 14 659 925 1419 820 9101 311 931 097 58 768 1,3
4 5 3651106 17 357 655 1875968 1692 515 1150914 70919 1,3
5 6 3949 274 19 003 622 1875968 12 038 882 1139498 78 500 1,3
6 7 4 420 258 21 019 412 2 080 422 13190 167 1328 565 87 225 1,2,3
7 8 4 818 254 23 253 041 2324 311 14 621 676 1488 801 97 298 1,2,3
For abbreviations’ explanation see Table 8; NCT — number of chick types adopted

Table 10. Sensitivity analysis for available chick types K (Problem category 7)

No K Profit R PC FCB FCM NCR NCT
1 1 3204153 14723 021 1429 214 9159 964 929 691 59 058 1

2 2 3204 195 15024 305 1459 431 9 353 627 1007 052 60 307 1

3 3 3207 697 14 659 925 1419 820 9101 311 931 097 58 768 1,3
4 4 3207 696 14 659 925 1419 820 9101 311 931 097 58 768 1,3
5 5 5370 581 18 126 395 1872 359 9 864 235 1019 220 66 918 1,5
6 6 6 691 503 18 717 335 1641769 8 871 650 1512 414 58 496 5,6
7 7 6 691 503 18 717 335 1641769 8 871 650 1512414 58 496 5,6

For abbreviations’ explanation see Table 8; NCT — number of chick types adopted

(4

time required for the HA approach is very stable at
81 to 82 seconds, implying that the HA approach
is more efficient than both the LINGO solver and
the CPLEX solver for large-scale test cases.

) For the super-large-scale test cases in problem
category 4, the LINGO solver and CPLEX solver
could not report any solution within 4 hours
(14 400 seconds). However, the HA approach
converges and reports the best solution within
670 to 716 seconds. This also implies that the
HA approach is more efficient and effective than
both the LINGO solver and CPLEX solver for
super-large-scale test cases.

From Tables 8 to 10, it can be seen that:

(1) The numerical results for problem category 5 in

Table 8 show that the profits and revenues (R) are
decreasing with increasing n. For example, the
profits are 3 369 597 and 3 083 323 for n = 0.85
and 1.15, respectively. Additionally, Table 8 also
implies that increasing feeding cost (ncf) will
reduce the total number of baby-chicks to raise
(NCR). However, the farmer does not always
reduce NCR. For example, the NCR is 61 486 for
both cases 2 and 3. This implies that the farmer

will only reduce NCR if the increase of ncf exceeds
a certain value.

(2) The numerical results for problem category 6

in Table 9 show that the profits, revenues (R),
baby chick purchasing cost (PC), feeding cost of
raising baby chicks (FCB), feeding cost of raising
chicks to maturity (FCM) and total number of
chicks to raise (NCR) increase as L increases.
This implies that more henhouses will increase
the profit and the number of chick types (NCT).
For example, NCT =1 for L = 2, while NCT =3
for L = 8.

(3) The numerical results for problem category 7 in

Table 10 show that the profits and revenues (R)
increase as K increases. This implies that having
more types of chicken available will increase the
profit and the number of chick types (NCT). For
example, NCT =1 for K = 2, while NCT = 2 for
K = 8. More specifically, to maximise the profit,
the farmer raises type-1 chicks when K < 2, raises
type-1 and type-3 chicks when 3 < K < 4, raises
type-1 and type-5 chicks when K = 5 and raises
chicks type-5 and type-6 when 6 < K < 7. This
phenomenon indicates that the HA approach
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is effective in choosing the best strategies for
maximal profit.

CONCLUSION

In this paper, we proposed a new mathematical model
to investigate the problem of chicken production, in-
cluding production planning and harvesting schedule
for chicken farmers. Due to the high computational
complexity of the problem, the proposed model can-
not be solved by general commercial software when
the problem size becomes large owing to, e.g., the
planning period and the number of henhouses. To
overcome this problem, in this paper, a hybrid com-
putational approach has been developed to obtain
comprise solutions for farmers. The main results are
summarised as follows.

(1) The proposed approach is superior to the LINGO
solver and the CPLEX solver in terms of solution
quality and computational time for larger problems.
The proposed approach can generate compromise
raising decisions for practically-sized problems for
which the LINGO solver and the CPLEX solver
cannot produce feasible solutions within a reason-
able frame of time.

(2) The numerical results of sensitivity analysis have
shown the impact of various parameters on the
considered problem, including the cost to feed
to maturity, the number of henhouses and the
number of chicken types.

(3) The numerical results have shown that the proposed
model and approach can support chicken farmers
in selecting proper henhouses in which to breed
chickens, and in optimally scheduling production
and harvesting to increase profits.
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