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Price elasticity of demand (PED) is one of the key 

concepts in the microeconomic consumer theory. 

Alfred Marshall (1890) was the first to introduce the 

PED explicitly, while the first empirical studies date 

back to the early 1900s (Pigou 1910). Since these pio-

neering works, a gradually increasing flow of papers 

on the PED has appeared in the literature, defining 

and estimating different consumer demand systems.1 

Even if it is impossible to mention all the contributions 

to this topic, some of them are particularly worthy of 

mention (Schultz 1938; Leser 1941; Stone 1954; Theil 

1967; Barten 1968; Pollak and Wales 1969; Deaton 

and Muellbauer 1980; Banks et al. 1997; Lewbel and 

Pendakur 2009). These works generally follow an 

empirical approach to provide the PED estimates, 

relegating the economic theory to a normative set of 

restrictions based on the consumer behaviour axioms 

(Barten 1964). The great majority of studies specify 

the demand systems in an expenditure-share format 

as a linear function of prices and the total expendi-

ture parameters (Barnett and Serletis 2008). Along 

this route, Deaton and Muellbauer (1980) and their 

Linear Approximation of the Almost Ideal Demand 

System (AIDS) provided a remarkable impetus to 

the literature, since their model is easily estimated 

by the linear methods.2

In these studies, the demand system key param-

eters on prices and expenditure are estimated in 

the whole population, while controlling the sample 

heterogeneity by means of the socio-demographic 

characteristics or latent groups (Bertail and Caillavet 

2008). PED is then straightforwardly calculated at the 

sample average values or taking the mean values of 

all calculated elasticities. 

However, the demand system key parameters can be 

estimated not only at the average level of the actual 

shares/expenditures, which is the general case. They 

can be considered also in the tails of the conditional 

distribution that is at the low and/or high values of 

the shares/expenditures. This approach allows the 

PED values to be investigated in contexts far from 

the average, which is the focus of the present analysis. 

To the best of our knowledge, few if any studies 

have dealt with prices having a different effect at 
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1To date, more than 2400 studies have been published on demand systems (Scopus). Indeed, Google Scholar provides 

an even larger number (50 000).
2The more recent EASI (Exact Affine Stone Index) demand system by Lewbel and Pendakur (2009) can be estimated 

as a linear model as well.
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various levels of consumption. Manning et al. (1995), 

for example, highlighted a different impact of the 

wine price on light, moderate, or heavy drinkers, 

estimating a single expenditure function by quantile 

regression. However, to date no studies have provided 

the PED values at different levels of consumption 

– i.e. different quantiles or expectiles – computed 

from a formal and theoretically consistent system 

of demand equations. 

Estimating the PED at different levels cannot be con-

sidered a mere empirical exercise since it is undeniable 

that a systematic low or high level of consumption 

might mirror different consumption habits directly or 

indirectly. For instance, the well-being deprivation can 

be related to a high share of essential goods and a low 

share of luxury goods, while the economic opulence 

can be linked to a low share of essential goods and 

high share of luxury goods. Thus going beyond the 

mean allows the PED estimates to account for differ-

ent kinds of consumption. Even though the PED is 

expected to be inelastic for the essential goods and 

more elastic for the luxury goods, it seems plausible 

to expect that both elasticities become more inelastic 

at a higher budget share, reflecting the consumer re-

sponse to price in a completely different situation. In 

other words, the different responses to price, related 

to the sample heteroskedasticity, entails the estima-

tion of the PED at the various levels of consumption.

In applied economics, the analysis in the tails is 

frequently implemented to measure earnings and wage 

differentials (Buchinsky 1994; Katz and Autor 1999; 

Angrist et al. 2006), or the impact of policy changes. 

These models are generally estimated via quantile 

regressions (Koenker and Bassett 1978; Koenker 2005) 

or via expectiles (Newey and Powell 1987; Sobotka 

et al. 2013). Both quantile and expectile regressions 

allow the estimation of parameters away from the 

conditional mean, thus revealing the impact of the 

explanatory variables at lower (higher) values than 

the conditional mean of the dependent variable. 

The idea is that the estimated model may have dif-

fering coefficients depending upon the selected point 

of the conditional distribution: the centre, the upper 

or the lower tail. At the lower or upper tail of the data 

generating process, the link between the dependent 

and explanatory variables, shares versus prices, may 

diverge from the relationship estimated at the centre 

of the distribution, the conditional mean. To move 

away from the conditional mean, quantile and expec-

tile estimators modify the objective function of the 

ordinary least squares (OLS) estimator. The quantile 

regression approach defines the objective function as 

the weighted sum of the absolute value of the errors, 

while the expectile estimator considers the weighted 

sum of squared errors. Both estimators introduce an 

asymmetric weighting system that moves the estimated 

regression along the conditional distribution, toward 

the tails and away from the centre.

The absolute value function in the quantile re-

gression estimator grants robustness with respect 

to outliers in the dependent variable. On the other 

hand, dealing with the cross-equation constraints 

is troublesome in the quantile regression setting 

(Davino et al. 2013). The expectile regression, which 

considers the asymmetrically weighted sum of squared 

errors, is easier to compute than the quantile regres-

sions, and the cross-equation restrictions are easily 

dealt with3. The presence of restrictions based on 

the consumer behaviour axioms leads to selecting 

the expectile estimator. 

In the following sections, the empirical analysis 

considers a simple demand system of equations 

focusing on five basic goods: Food, Recreation, 

Clothing, Transport, Rent, using the Canadian Family 

Expenditure Survey data in Lewbel and Pendakur 

(2009). The estimated model has a smaller number 

of equations than the one presented by Lewbel and 

Pendakur (2009). Indeed, the purpose is not to estimate 

of the model per se, but to analyse its behaviour at the 

various expectiles. This allows us to check whether 

the estimated coefficients do actually change in the 

tails with respect to the simple OLS (conditional 

mean) results. 

Once the model has been computed at various ex-

pectiles, the comparison of the estimated elasticity of 

each commodity at the selected expectiles is tested to 

verify the statistical relevance of any difference among 

the estimates in the tails and those computed at the 

centre of the conditional distribution. To this end, a 

Wald type test is implemented to verify the null of 

equality of the elasticity estimates across expectiles.

The results show with a strong evidence that the 

elasticity of Food and Recreation grows across the 

expectiles. Clothing variations are less evident, while 

the Transport and Rent elasticity is basically constant 

across the expectiles. 

3The lack of robustness typical of the OLS can be solved by a preliminary analysis of anomalous values, estimating the 

model in a truncated sample, where the detected outliers have been removed.
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THEORETICAL FRAMEWORK: EXPECTILE 

AIDS

A vast theoretical and empirical literature has de-

voted a huge effort to estimating the demand system 

and the resulting PED (Barnett and Serletis 2008). 

The most widely used models adopt a specification 

of the system of demand equations in which the 

dependent variables are the budget shares of the 

consumption categories of interest. Among them, the 

linear approximation to the Almost Ideal Demand 

System (LA-AIDS) of Deaton and Muellbauer (1980) 

has enjoyed immense popularity because it can be 

estimated using linear models (Dossche et al. 2010). 

The present analysis focuses on the LA-AIDS, al-

though several caveats are known in the literature, 

such as the assumption of the linear Engel curves. 

As mentioned above, since the aim of the paper is 

to analyse the behaviour of the model in the tails of 

the distribution, the adoption of non-linear models 

such as the QUAIDS (Banks et al. 1997; Christensen 

2014) would somehow cloud the picture. A future 

research will be devoted to the analysis of non-linear 

demand equations. 

For each household h, the equation of the budget 

share w
i 
of the ith good in the LA-AIDS model may 

be written as:

* *1
ln lnn h

ih ih ij jh i ihj
h

Xw P u
P

                              i, j = 1,..., n; h = 1,... H (1)

where P
ih

 is the price of the ith good for the hth house-

hold, X
h
 = 1

n
ih ihi

P q  is the total expenditure for the 

household, q
ih 

is the consumed quantity with the share 

computed as w
ih

 = P
ih

q
ih

/X
h
. The terms α

ih*
, β

i
 and γ

ij
 

are the parameters to be estimated, respectively the 

intercept, the total expenditure coefficient, the own 

price coefficients when i = j, and the cross price coef-

ficients for i ≠ j, while u
ih

 is the error term. Following 

many other empirical studies (Mizobuchi and Tanizaki 

2013) a corrected Stone Index4 could be selected as the 

deflating price index, P
h

*, using the average share iw :

ln P
h

* =
1

lnn
i ihi

w P  h = 1, ..., H  (2)

To account for the possible heterogeneity in house-

hold preferences and expenditure behaviour over 

time, the intercept is expressed as a linear function 

of k = 1, ..., K socio-demographic and time variables.

*
1

K

ih i ik kh
k

D  (3)

Finally, the usual parameter restrictions on sym-

metry (4a), homogeneity (4b) and additivity (4c) are 

imposed in estimating the demand system parameters, 

as specified below:

γ
ij 

= γ
ji 
    ∀i,j  (4a)

0ij
j

 ∀i,j  (4b)

0;  1;  0   ; 0  i i ij ik
i i i i

j k (4c)

In the expectile setting, equation (1) is modified to 

include an asymmetric weighting system that moves 

the stochastic equation along the conditional distri-

bution, away from the conditional mean and up or 

down toward the tails. Equation (1) becomes: 

* *1
ln lnn h

ih ih ih ih ij jh i ih ihj
h

Xg w g P g u
P

                               i, j = 1,..., n; h = 1,..., H  (5)

where the asymmetric weighting system is

if 0
1 otherwise

ih
ih

u
g

For instance, to compute the θ = 25th expectile g
ih

 

assigns weights g
ih

 = 0.75 to those observations below 

the regression, in order to attract toward the lower 

tail, the estimated equation, and assigns weights 

g
ih

 = 0.25 to the observations in the upper tail of the 

conditional distribution.

At a given expectile (suppressing the household 

subscript h), the definition of PED is:

, ( )i j

*( ) ( ) ln
ln

ij i
ij

i i j

d P
w w d P

 (6)

where τ
ij
 is the Kronecker delta (τ

ij
 = 1 for i = j; τ

ij
 = 0 

for i ≠ j) and iw is the sample average5. 

By assuming (Alston et al. 1994), 
*ln

ln j
j

d P w
d P

, PED 

becomes: 

,

( ) ( )( ) ij i
i j ij j

i i

w
w w

  (7)

4As shown in Moschini (1995), the usual Stone index is invariant to changes in units of measurements and this may lead 

to biased parameter estimates. Using the average share iw  instead of household share w
hi

 solves this issue.
5By using iw , η

i,j
(θ) are estimated at sample mean, which is equivalent to computing the expected value of η

ij
(θ).
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DATA 

The system of demand equations and PED are es-

timated for the Canadian Family Expenditure Survey 

data in Lewbel and Pendakur (2009). The original 

sample comprised nine commodities: food-in, food-

out, rent, clothing, household operation, household 

furnishing and equipment, transportation operation, 

recreation, and personal care. The sample includes 

4847 observations on the quantities and prices col-

lected in the period 1969–1996. The data set also 

includes a series of five demographic characteristics: 

(1) age minus 40; (2) a gender dummy assuming value 

one for men; (3) a car-nonowner dummy equal to one 

if gasoline expenditures (at 1986 gasoline prices) are 

less than $50; (4) a social assistance dummy equal to 

one if government transfers are greater than 10 per-

cent of gross income; and (5) a time variable equal to 

the calendar year minus 1986 (equal to zero in 1986). 

These demographic variables define the intercept α
ih*

 

of equation 3 and are gathered in D
k
, for k = 1, ..., 5. 

A detailed description of the data set can be found 

in Lewbel and Pendakur (2009: 839–840)6. 

This study primarily focuses on the behaviour of 

the PED in the tails of the conditional distribution. To 

this end, the demand equation system is simplified by 

selecting the following five categories with the highest 

expenditure share: food-in, rent, clothing, transporta-

tion and recreation. This choice was entirely driven by 

the need to reduce the computational burden and to 

economize on the number of model parameters. The 

last two columns of Table 1 report the sample mean 

and standard deviation for the variables of interest.

ESTIMATION 

Consider the demand system specified in equation 

(1) as a generic demand system u
h
 = r(w

h
, X

h
, β) = 

w
h
 – f(X

h
, β), not necessarily linear, where w

h
 and u

h
 

are n × 1 vectors, X
h
 is a n × L matrix – where L is 

the number of covariates, and β is a M × n matrix – 

where M is the number of unknown parameters. We 

assume that the error vector u
h 

is independent and 

identically distributed over h, with the covariance 

matrix Ω, where the components of u
h
 for given h 

may be correlated with the variances and covariances 

that vary over h. The β estimator is defined as: 

1'ˆ argmin , ,w f X w f X  (8)

6A potential source of endogeneity may arise from the demographic variables. For instance, complex links may occur 

between consumption and social assistance or car-nonownership and transportation expenditure. However, as dis-

cussed in Lewbel and Pendakur (2009, p. 837) the estimates accounting for endogeneity do not substantially differ 

from the results computed without instruments. Future studies may generalize the expectile approach to include 

instrumental variables.

Table 1. Summary statistics for the variables in the demand system

Variable Mean (H
tr 

) S.D. (H
tr 

) Mean (H) S.D. (H)

w
1

Food-in expenditure share 0.183 0.092 0.183 0.096

w
2

Renting expenditure share 0.101 0.083 0.103 0.089

w
3

Clothing expenditure share 0.105 0.072 0.106 0.076

w
4

Transportation expenditure share 0.145 0.095 0.146 0.098

w
5

Recreation expenditure share 0.467 0.130 0.462 0.134

p
1

Price of Food-in 1.027 0.314 1.026 0.315

p
2

Price of Renting 0.991 0.324 0.989 0.325

p
3

Price of Clothing 1.096 0.307 1.095 0.308

p
4

Price of Transportation 1.040 0.438 1.037 0.439

p
5

Price of Recreation 1.079 0.341 1.077 0.342

X Total expenditure 0.919 0.644 0.919 0.650

z
1

Age minus 40 0.701 11.873 0.711 11.888

z
2

Sex (1 if male) 0.510 0.500 0.506 0.500

z
3

Car non-owner (1 if non-owner) 0.413 0.492 0.415 0.493

z
4

Social assistance (1 if presence of social assistance) 0.268 0.443 0.268 0.443

z
5

Time variable (year minus 1986) 3.036 8.703 2.991 8.729

Original sample of size H = 4847; truncated sample of size H
tr 

= 4739
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The solution for β and Ω is computed by the itera-

tive Aitken estimator (Barnett 1976; Kmenta 1986), 

iterating β and Ω until convergence, where the latter is 

computed as 
1

1ˆ ˆ ˆ
H

h h
hH
u u  and is initialized by Ω = I.

Having estimated the model at the centre of the 

conditional distribution, the goal is to move away from 

it toward the tails. Consider as a first approximation 

a single equation approach. As mentioned above, the 

expectiles, or the asymmetric least squares, modify 

the standard OLS objective function by introducing an 

asymmetric weighting system that moves the estimated 

regression along the conditional distribution, away 

from the conditional mean and up or down toward 

the tails of the distribution. The objective function 

of the expectile regression is given by 

 +   =  (9)

where g
ih

 is equal to θ or 1– θ according to the posi-

tion of the error term, above or below the regression.

Going back to the system of demand equations, 

this involves defining the objective function (8) in 

terms of u
h

*= g
h
u

h 
= g

h
w

h
 – f(g

h
X

h
, β(θ)) = w

h
* – f(X

h
*, 

β(θ)), yielding 

* * * 1 * *
( )

'ˆ( ) argmin , ( ) , ( )w f X w f X  

                                   (10)

with .

Next, the model can be estimated at different values 

of θ. Our analysis considers the 25th, 35th, 50th, 65th, 

and 75th expectiles7. These estimates are compared 

with one another, particularly those computed at 

the 25th, 50th and 75th expectile, and are tested to 

verify the statistical relevance of their difference. In 

detail, to test whether the changes in elasticity across 

expectiles are statistically relevant, the 25th versus 

the 50th, the 50th versus the 75th, and the 25th versus 

the 75th expectile are compared. Analogously to the 

changing coefficient test discussed in Koenker and 

Basset (1982), the test function is a Wald type χ2 test. 

The null hypothesis is H
0
: η(θ

v
) = η(θ

m
), where η(θ

v
) 

and η(θ
m

) are the vectors of elasticity estimated at 

the θ =vth and at the θ =mth expectile. The test func-

tion is given by 

W = [η(θ
v
) – η(θ

m
)]’ ∑–1[η(θ

v
) – η(θ

m
)] (11)

and is asymptotically distributed as a χ2 with degrees 

of freedom equal to the number of comparisons un-

der test.

To implement the W test, the covariances between 

each pair of expectile regressions are needed. The 

diagonal elements of the variance covariance matrix 

across expectiles, Σ, are defined as 

= E( )2
 
 (12) 

while the off diagonal terms are given by

= E[ ] [ ]  (13)

The Σ matrix is unknown, but it can be estimated 

by bootstrap. Data on prices, quantities and expen-

diture are re-sampled T = 1000 times and the 25th, 

50th and 75th estimates are computed each time. The 

estimated coefficients allow the series of T = 1000 

estimated PED to be computed for each good and at 

all the selected expectiles. The variance covariance 

matrix across expectiles Σ can then be computed.

EMPIRICAL RESULTS

In this paper, the expectile regression estimator is 

implemented to compute the model at the centre and 

in the tails of the conditional distribution. As stated 

above, the expectiles are defined as the asymmetri-

cally weighted least squares, and are thus affected 

by outliers just like the OLS. Therefore, due to the 

lack of robustness of the expectiles, a preliminary 

analysis of the OLS residual – the residuals of the 

regression estimated at the conditional mean – is 

implemented to detect outliers and to evaluate their 

impact on the estimated coefficients. Anomalous 

values can be very damaging in a regression model, 

since they may be leverage points and as such they 

cause biased estimates. Once the outliers are de-

tected, they can be discarded and the model can be 

re-estimated in the truncated data set. By eliminating 

the outliers, the expectile regression estimator gains 

robustness, while without this preliminary analysis 

the results are influenced by the anomalous values 

and may be biased.

The initial step is to estimate the model as in equa-

tion (8). Next, the analysis focuses on the detection of 

7Just as in the conditional mean analysis (OLS), the demand system is estimated for one expectile at the time. The de-

mand restrictions hold within each expectile and they are not imposed simultaneously across all the expectiles. The 

results refer to households being in same θ-th expectile in the consumption of each i-th good.
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anomalous values.8 The absolute value of the residuals 

are standardized and are compared to a chosen bound. 

The values exceeding the bound signal the outlying 

observations, which are then discarded from the 

sample. The bound is set by looking at the extreme 

tails of the standard normal, with p-value α = 0.0002, 

which corresponds to z = 3.7.9 This criterion leads 

to drop 108 observations from the sample, yielding a 

truncated sample of size H
tr

 = 4739, which amounts 

to a trimming rate of about 2.2%. The first two col-

umns in Table 1 report the sample mean and standard 

deviation in the truncated sample H
tr

.

The above detection rule was double-checked by 

implementing a single equation outlier detection 

approach. Each equation is robustly estimated at the 

conditional mean by the robust M-estimator, defined 

as Σ
h = 1,..H

ρ(u
hi

) where the ρ(u
hi

) function bounds 

the anomalous values of the sample. The estimator 

is implemented iteratively, updating at each step 

the bounding function and the residuals.10 The final 

bounding function provides a valuable detection 

tool to spot the large and influential outliers. In the 

single equation analysis, the M-estimator points out 

127 outlying observations which it is advisable to 

exclude from the sample. The outliers detected by 

this single equation approach mostly coincide with 

the data points previously discarded by implementing 

the standardized residuals approach based on the 

initial estimates of the demand equations system 

in (8). With respect to the standardized residuals, 

the robust single equation detection rule discards 

an additional number of 19 observations. However, 

the system approach to the outlier detection was 

preferred and these 19 outliers are included in the 

sample. 

Next, the model is re-estimated in the truncated 

sample and the results are reported in Table 2.11 The 

final results on PED in the H
tr

 sample are in the third 

column of Table 5.

The model can then be estimated at other points of 

the conditional distribution besides the conditional 

mean by implementing the expectile regression estima-

Table 2. Demand system estimates at the 50th expectile, 

H
tr

 sample

  Food-in Recreation Clothing Transport Rent

α
i

0.416 –0.121 –0.076 0.225 0.556

33.64 –10.47 –7.4 20.17 37.65

β
i

–0.064 0.061 0.045 –0.004 –0.037

  –20.75 21.2 17.84 –1.62 –9.9

γ
i,j: Food-in

0.082 –0.037 –0.056 –0.021 0.032

  6.73 –3.77 –5.56 –2.39 3.38

γ
i,j: Recreation

–0.037 –0.003 0.084 –0.015 –0.029

  –3.77 –0.17 6.36 –1.51 –2.92

γ
i,j: Clothing

–0.056 0.084 0.012 0.013 –0.054

  –5.56 6.36 0.75 1.37 –5.73

γ
i,j: Transport

–0.021 –0.015 0.013 0.023 0.000

  –2.39 –1.51 1.37 1.8 0.02

γ
i,j: Rent

0.032 –0.029 –0.054 0.000 0.050

  3.38 –2.92 –5.73 0.02 3.56

δ
i,k: Age

 0.001 –0.012 0.026 0.016 0.001

  14.61 –5.52 10.35 5.44 6.17

δ
i,k: Sex

–0.001 –0.029 0.016 –0.006 –0.001

  –12.27 –14.49 7.04 –2.21 –6

δ
i,k: Car

–0.001 0.035 0.016 –0.017 –0.004

  –8.83 20.15 7.98 –7.61 –18.33

δ
i,k: Soc. ass.

 0.000 –0.011 –0.122 –0.013 0.000

  –5.42 –5.88 –54.89 –5.03 –1.81

δ
i,k: Time

 0.001 0.018 0.064 0.020 0.004

  7.08 6.76 21.49 6.06 15.22

t-statistics in italics

8Table A.1 in the Appendix reports the estimates of the initial model. 
9The 3.7 bound is quite large, it coincides with the interval ±3.7σ, where σ = 1 in the standard normal, and is wider than 

the usual ±2σ  or ±3σ  bounds. This means that only the very large (small) values are discarded.
10The Huber (1964) function is defined as ρ(u

ih
) = 0.5  for |u

ih
| ≤ c and ρ(u

ih
) = c|u

ih
| – 0.5c2 for |u

ih
| >c. It down 

weights those values exceeding the selected bound c, which is usually set equal to c = 1.345. After a first set of iteration, 

a different bounding function is implemented, the redescending function (Beaton and Tukey 1974), which completely 

excludes the extreme outlying observations from the data set. This function is defined as ρ(e
ih

) = 1/6[1 – (1 – )3] for 

|e
ih

| ≤ 1 and ρ(e
ih

) =1/6 for |e
ih

| > 1, where e
ih

 are the residuals standardized by e
ih

 = u
ih

/bS, with b ranging from 6 to 

12 and S being the median absolute deviation of u
ih

. By looking at the combination of the Huber and the redescending 

M-estimators, the extreme influential outliers in the data set may be detected and excluded.
11Table A.1 in the Appendix provides the results computed in the original sample so that it is possible to compare the 

estimated coefficients computed in the full sample of size H = 4847 with the results of the truncated one, H
tr 

= 4739, 

here discussed. When compared with the results of Table A.1, the estimates and the t statistics of Table 2 are slightly 

smaller. As a consequence, the null is no longer rejected for some of the estimated coefficients.
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tors12 . In what follows, the equations are computed at 

the 25th, 35th, 50th, 65th and 75th expectile. In Table 3 

are the estimates for the 25th expectile and Table 4 

displays the results for the 75th expectile.13 Table 5 

reports the estimated PED at the various expectiles 

together with the significance level in rejecting the 

null H
0: 

|η(θ)| =1. The table shows that the PED does 

indeed change across the expectiles. In particular, 

there is an increasing pattern for Food, Recreation 

and Clothing, where food rejects the null at each 

expectile while Recreation and Clothing reject the 

null only at the highest expectile. In other terms, the 

Food PED is inelastic at all the considered expectiles. 

The PED becomes inelastic at the 75th expectile in 

the case of Recreation and Clothing, while the PED 

presents a basically stable elastic pattern for Rent 

and Transportation, rejecting the null hypothesis at 

every expectile.

Table 3. Demand system estimates at the 25th expectile, 

H
tr

 sample

  Food-in Recreation Clothing Transport Rent

α
i

0.360 –0.049 –0.018 0.191 0.517
  17.49 –2.83 –1.08 10.12 26.50

β
i

–0.046 0.040 0.029 –0.001 –0.022
  –9.01 9.29 6.99 –0.23 –4.48

γ
i,j: Food-in

0.061 –0.023 –0.041 –0.025 0.028
  2.95 –1.54 –2.50 –1.72 2.00

γ
i,j: Recreation

–0.023 –0.011 0.066 –0.012 –0.020
  –1.54 –0.50 3.39 –0.78 –1.44

γ
i,j: Clothing

–0.041 0.066 0.004 0.013 –0.042
  –2.50 3.39 0.15 0.88 –2.97

γ
i,j: Transport

–0.025 –0.012 0.013 0.030 –0.006
  –1.72 –0.78 0.88 1.45 –0.36

γ
i,j: Rent

0.028 –0.020 –0.042 –0.006 0.040
  2.00 –1.44 –2.97 –0.36 2.12

δ
i,k: Age

 0.001 –0.011 0.012 0.007 0.001
  5.40 –3.10 2.95 1.52 2.17

δ
i,k: Sex

–0.001 –0.022 0.004 –0.004 –0.001
  –5.91 –7.61 1.35 –1.00 –2.53

δ
i,k: Car

0.000 0.024 0.009 –0.011 –0.003
  –4.07 8.53 2.86 –3.04 –8.80

δ
i,k: Soc. ass.

 0.000 –0.005 –0.092 –0.008 –0.001
  –2.58 –1.62 –24.15 –1.94 –1.43

δ
i,k: Time

 0.001 0.015 0.067 0.016 0.004
  5.15 4.44 17.40 3.70 9.22

t-statistics in italics

Table 4. Demand system estimates at the 75th expectile, 

H
tr

 sample

  Food-in Recreation Clothing Transport Rent

α
i

0.377 –0.094 –0.051 0.229 0.539
  36.76 –10.86 –6.71 22.91 29.95

β
i

–0.054 0.058 0.040 –0.008 –0.036
  –21.13 27.18 21.62 –3.02 –7.87

γ
i,j: Food-in

0.080 –0.041 –0.051 –0.005 0.017
  8.57 –5.65 –7.01 –0.67 1.91

γ
i,j: Recreation

–0.041 0.021 0.063 –0.016 –0.027
  –5.65 1.89 6.46 –2.12 –3.07

γ
i,j: Clothing

–0.051 0.063 0.024 0.004 –0.040
  –7.01 6.46 2.10 0.62 –5.34

γ
i,j: Transport

–0.005 –0.016 0.004 0.024 –0.007
  –0.67 –2.12 0.62 2.05 –0.64

γ
i,j: Rent

0.017 –0.027 –0.040 –0.007 0.057
  1.91 –3.07 –5.34 –0.64 3.20

δ
i,k: Age

 0.001 –0.012 0.024 0.015 0.001
  16.18 –6.26 11.40 6.30 4.57

δ
i,k: Sex

–0.001 –0.027 0.015 0.001 –0.002
  –10.60 –16.64 8.23 0.31 –9.80

δ
i,k: Car

0.000 0.029 0.011 –0.014 –0.003
  –7.38 20.78 6.86 –7.90 –19.34

δ
i,k: Soc. ass.

 0.000 –0.013 –0.101 –0.009 0.000
  –5.15 –7.13 –50.81 –4.07 –1.84

δ
i,k: Time

 0.000 0.022 0.051 0.008 0.005
  1.75 6.58 13.39 1.78 13.45

t-statistics in italics

12Once outliers have been dropped from the sample, the expectile estimator gains robustness and it is no longer af-

fected by anomalous values.
13The results for the 35th and the 65th expectile are available on request.

Table 5. Estimated elasticity at the selected expectiles, 

sample size H
tr

Sample H
tr

25th  35th  50 th  65 th  75 th

Food-in –0.586*** –0.501*** –0.442*** –0.421*** –0.467***

(0.103) (0.055) (0.076) (0.102) (0.060)

Recreation –1.183 –1.127 –1.095 –0.851 –0.785*

(0.205) (0.164) (0.213) (0.220) (0.169)

Clothing –0.988 –0.876 –0.911 –0.792 –0.773*

(0.208) (0.147) (0.201) (0.219) (0.157)

Transport –0.789*** –0.776*** –0.834** –0.891* –0.823**

(0.118) (0.076) (0.097) (0.123) (0.086)

Rent –0.890*** –0.886*** –0.853*** –0.824*** –0.842***

(0.038) (0.031) (0.032) (0.044) (0.039)

Bootstrapped standard deviation in parenthesis; the stars 

signal the significance level for the rejection of the null 

H
0
: |η(θ)| = 1, *** for α = 0.01,** for α = 0.05, * for α = 0.10
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Back to equation (7), looking at the case i = j, it is 

worth noting that the estimated values of β
i
 are quite 

small across the expectiles, as can be seen in Tables 2 

to 4. Thus their impact on elasticity is negligible and 

η
ii
(θ) becomes a function of the ratio 

( )ii

iw
, since 

τ
ii
 = 1. Therefore, the larger this ratio the greater is 

the discrepancy of η
ii
(θ) from unity. 

Figure 1 complements Table 5 by depicting the pat-

tern of each elasticity across the expectiles.14 Figure 2, 

by reversing the axis, shows the changes in elasticity 

of the goods across expectiles, with Recreation pre-

senting the widest variation, followed in decreasing 

order by Clothing, Food, and then Transport and 

Rent. These variations are reported in Table 6, where 

the differences between the estimated elasticity at 

the 25th, 50th and 75th expectile are computed. This 

table clearly shows the sign and the size of changes 

in Food, Recreation and Clothing elasticity across 

the expectiles, together with the comparatively small 

changes in Rent and Transport elasticity, thus provid-

ing evidence of their greater stability.15 

Figure 3 depicts the distribution of the elasticity 

of the five goods as estimated by the bootstrap at 

the 25th, 50th and 75th expectile. These bootstrap es-

timates are needed to compute the covariance ma-

trix across expectiles ∑ in the Wald test function of 

equation (11). However, their empirical distributions 

are quite informative and validate the above results. 

Food elasticity at the 25th expectile differs from the 

distributions at the 50th and 75th expectile. Clothing 

and Recreation elasticity at the 25th and at the 50th 

expectile are close to each other, but these curves are 

far from the distribution at the 75th expectile, signalling 
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Figure 2. Estimates at each expectile, truncated sample

Table 6. Inter-expectiles differences in estimated elasticity

Sample H
tr

50th–25th 75th–50th 75th–25th

Food-in 0.14 –0.03 0.12

Recreation 0.09 0.31 0.40

Clothing 0.08 0.14 0.22

Transport –0.04 0.01 –0.03

Rent 0.04 0.01 0.05

Table 7. Wald test

Sample H
tr

50th–25th 75th–50th 75th–25th

Food-in 6.98*** 0.07 0.98

Recreation 1.05 2.68* 3.08*

Clothing 0.78 0.64 0.95

Transport 0.40 0.01 0.05

Rent 1.76 0.08 0.76

The stars signal the significance level for the rejection of 

the null; H
0
: η(θ

v
) = η(θ

m
); ***for α = 0.01,**for α = 0.05, 

*for α = 0.10

14Table 5 can be compared with Table A.2 of the Appendix, which reports the estimated elasticity in the original sample 

of size H. The original sample confirms the presence of changing parameters, although the estimates are somewhat 

different, smaller for food and larger for clothing and recreation. The comparison of Table 5 with Table A.2 and of 

Figure 1 with Figure A.1 shows that the presence of outliers causes greater heterogeneity in the behavior of each 

equation across quantiles in the original sample, as for instance occurs for Food and Clothing. This heterogeneity 

can hardly be explained by economic reasons and can be ascribed to the lack of robustness of the expectile estimator 

in the presence of outliers.
15Table 6 and 7 can be compared with Table A.3 and A.4 in the Appendix. 
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once again that these elasticities do change across the 

expectiles. Finally, Transport and Rent distributions 

do not change much across the expectiles.

Summarizing, the distributions of the bootstrapped 

elasticity provide an additional evidence of the pres-

ence of changing elasticity in three out of five goods 

and purport the relevance of an analysis implemented 

not only at the average but also in the tails of the 

conditional distribution.

Table 6 reports the difference of elasticity as com-

puted for the five goods at two different expectiles, 

η(θ
v
) – η(θ

m
). The table shows that the largest changes 

occur in Food – when comparing the elasticity at 

the 25th versus the 50th expectile; Recreation – in 

the comparison of the 25th versus the 75th expectile 

and of the 50th versus the 75th expectile; Cloth – in 

the comparison of the 25th versus the 75th expectile. 

Finally, Table 7 reports the estimated Wald test 

for each equation comparing the 50th versus the 25th, 

the 75th versus the 50th, and the 75th versus the 25th 

expectile under the null H
0
: η(θ

v
) = η(θ

m
). These 

values are compared with the critical values of a 

χ2 with one degree of freedom. The starred values 

signal the rejection of the null of constant elasticity 
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at the significance level α = 1%, 5% and 10%. Food 

elasticity computed at the 25th and 50th expectile 

yields the largest estimated Wald test function, and 

the null is strongly rejected at α = 1%. Comparison of 

Recreation elasticity at the 50th versus the 75th, and 

at the 25th versus the 75th, allows the null at α = 10% 

to be rejected. Clothing elasticity, which in Figure 3 

and in Table 6 does present discrepancies between 

the 25th versus the 75th and between the 50th and the 

75th expectile, yields the Wald test results that do 

not reject the null. This may be due to the relatively 

larger dispersion of these distributions that offsets 

the changes in location at the various expectiles.16

CONCLUSIONS

A linear demand equation system is computed 

at different points of the conditional distribution 

through the expectile regression estimator. The lat-

ter provides a tool to investigate the existence of 

changing PED at different levels of expenditure. 

The selected model comprises five goods: Food, 

Recreation, Clothing, Transport and Rent, using the 

Canadian Family Expenditure Survey data in Lewbel 

and Pendakur (2009). The purpose of the analysis is 

not to re-estimate the PED values, but to highlight 

the opportunity to provide the PED estimates at the 

various levels of expenditures. Through the expectile 

estimator, the model can be computed not only at 

the mean, as is generally done when implementing 

the OLS, but also at the lower and higher levels of 

expenditure. By estimating the model only at the 

conditional average of expenditure, the behaviour 

of the demand equations in the tails is unknown 

and undefined. 

The results show that the elasticity does change along 

the conditional distribution for three of the five goods 

under study. A Wald test on the equality of elasticity 

across the expectiles shows that these changes are sta-

tistically relevant for Food and Recreation. By contrast, 

Transport and Rent are more stable and none of the 

different approaches implemented provides evidence 

of instability in their elasticity along the conditional 

distribution. The above analysis can be extended in 

more than one direction, and a further research may 

focus on a larger number of goods, on the definition 

of nonlinear demand equations, on different robust 

regression estimators for the outlier detection.

16This table can be compared with Table A.4 in the Appendix, which presents comparable results. 

APPENDIX

Table A.1. Estimates of the demand equations, original 

sample

  Food-in Recreation Clothing Transport Rent

α
i

0.422 –0.139 –0.093 0.239 0.571
  32.24 –10.73 –8.47 20.12 30.98

β
i

–0.066 0.067 0.050 –0.007 –0.043
  –20.26 20.72 18.41 –2.32 –9.27

γ
i,j: Food-in

0.095 –0.041 –0.062 –0.024 0.032
  7.36 –3.8 –5.77 –2.52 2.97

γ
i,j: Recreation

–0.041 0.012 0.079 –0.023 –0.027
  –3.8 0.68 5.46 –2.11 –2.26

γ
i,j: Clothing

–0.062 0.079 0.031 0.019 –0.068

  –5.77 5.46 1.8 1.89 –6.47

γ
i,j: Transport

–0.024 –0.023 0.019 0.032 –0.004
  –2.52 –2.11 1.89 2.27 –0.34

γ
i,j: Rent

0.032 –0.027 –0.068 –0.004 0.066
  2.97 –2.26 –6.47 –0.34 3.67

δ
i,k: Age

 0.001 –0.012 0.028 0.019 0.002
  13.82 –5.17 10.36 6 6.06

δ
i,k: Sex

–0.001 –0.033 0.017 –0.004 –0.002
  –10.91 –14.02 6.34 –1.39 –6.49

δ
i,k: Car

 0.034 0.017 –0.017 –0.004
  –7.81 17.7 7.64 –6.74 –18.5

δ
i,k: Soc. ass.

 0.000 –0.014 –0.129 –0.015 –0.001
  –4.34 –6.38 –53.56 –5.24 –1.76

δ
i,k: Time

 0.001 0.024 0.067 0.017 0.005
  4.86 7.08 17.26 3.81 14.23

t-statistics in italics

Table A.2. Estimated elasticity at the selected expectiles, 

original sample H

Sample H 25th 35th 50 th 65 th 75 th

Food-in –0.419 –0.487 –0.385 –0.479 –0.566
(0.107) (0.106) (0.083) (0.058) (0.065)

Recreation –1.039 –0.942 –0.903 –0.782 –0.834
(0.211) (0.233) (0.231) (0.189) (0.199)

Clothing –0.81 –0.992 –0.775 –0.464 –0.668
(0.209) (0.224) (0.205) (0.155) (0.164)

Transport –0.831 –0.793 –0.79 –0.878 –0.82
(0.118) (0.123) (0.101) (0.08) (0.092)

Rent –0.869 –0.884 –0.848 –0.87 –0.88
(0.04) (0.046) (0.033) (0.034) (0.043)

Bootstrapped standard deviation in parenthesis
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