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In natural disasters, many phenomena appear more 

unstable, and as the weather is a non-linear dynamics, 

it is natural to ask a question whether the subject-

matter due to typhoons is a chaotic behaviour? The 

word “chaos” is a complete disorder or confusion, 

that is, chaos in science and engineering refers to 

an apparent lack of order in a system that neverthe-

less obeys certain laws and rules (Adams et al. 1998; 

Aggarwal et al. 2006). The natural disasters in the 

world have caused a great damage to crop production 

(Antonio and Beirlant 2007). Rice is the world’s most 

important staple food crop and it feeds more than 

half of the world population (FAO UN 2013). The rice 

production is largely concentrated in Asia and the 

estimate of the world rice production about 652 mil-

lion tons, 90% of which comes from Asia (Luo 1998; 

Chang 2002; Chatrath 2002; Yun 2003). According to 

the statistics of the Taiwan’s Agriculture Yearbook, 

significant financial losses in agricultural sector in 

Taiwan are commonly caused from various natural 

events, such as typhoons, floods, droughts, insects, 

earthquakes, hails, and so on. Of all the weather phe-

nomena, typhoons (or tropical cyclones) are the most 

catastrophic, not only for their fierceness but also 

the frequency of occurrence. The typhoon disasters 

in the Taiwan usually have caused a great damage 

to crop. For the recent two decades, typhoons hit 

the Taiwanese crop products with the value of US$ 

66.9 billion. Over a 30-yrs period, Taiwan was hit by 

3.3 typhoons per year in average and they brought 

abundant rainfalls and strong winds, leading to a 

severe damage to crops and great property losses. For 

example, a typhoon caused up to 60% of Taiwan’s rice 

losses in 1971–2005. However, we may ask a question 

whether the rice damaged due to typhoons is also a 

chaotic behaviour in Taiwan? The most important 

problem is that how could we forecast the whether 

the rice damage? 

In this paper, we first used the BDS test (Grassberger 

and Procaccia 1983) for the correlation dimension 

estimates, and the rescaled range analysis to inves-

tigate the problem. Note that the BDS test is based 

on a kind of the correlation integral which is used to 

examine the probability that a purely random system 

could have the same scaling properties as the rice 

damage indices. The test, which is useful when we 

have no idea about what sort of hidden structure to 

expect, locates the existence of a structure, the non-
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linearity and the hidden patterns, which potentially 

renders the series susceptible to forecasting. We 

also calculate the Grassberger-Procaccia correlation 

dimension (CD) and the Foulkes’ statistical cor-

relation dimension (SCD) which, contrast to other 

statistics, calculate distances for all pairs of data 

points and could be applied to test the nonlinearity 

in stochastic processes (Hurst 1951,1957; Kim 2003). 

Finally, we use the rescaled range (R/S) method of 

nonlinear analysis to study the correlation properties 

in our data sets, in which we evaluate of the Hurst 

scaling exponent (Lai 2010). In this paper, we use 

the thirty-six years data of the rice damaged due 

to typhoons in Taiwan to investigate the problems. 

In the second part of this paper, we investigate the 

problem whether the typhoon frequencies and rice 

damages due to typhoons could be described by the 

nonlinear smooth transition autoregressive (STAR) 

models of Terasvirta (LeBaron 1996). We will try to 

use the logistic and exponential smooth transition 

autoregressive (LSTAR/ESTAR) and the AR(m)-

GARCH(p,q) models to describe the data. It is em-

ployed to test for the existence of nonlinearities in 

damages due to typhoons and to identify the nature 

of those dynamics. We first determine the optimal 

lag length by the Akaike Information Criterion (AIC) 

and the Schwarz Information Criterion (SIC). We use 

the F-test statistic to determine the delay parameter 

in the STAR model. After determining the delay 

parameter therein, we attempt to make a choice 

between the LSTAR and ESTAR models which inves-

tigates the time series of typhoons described by the 

LSTAR or ESTAR while the associated rice damage 

is described by the linear or nonlinear model. This 

is consistent with the chaotic analysis that the rice 

damage shows a random behaviour while the time 

series of typhoons show a chaotic dynamics. In the 

relatives case, in addition to the nonlinear models 

that allow obtaining consistent estimators, we re-

think that the chaotic dynamic information derived 

from the heuristic approach might be still useful and 

should not be disregarded on the natural disasters. 

In this paper, we also analyse the extended ARMA 

and AR-GARCH models to include the price of rice 

impact loss severity, and fitting the linear/nonlinear 

model on the loss frequency to estimate the loss cost. 

The objective of this paper is to present and pro-

vide a new ideal and an empirical methodology for 

evaluating the agricultural loss due to the typhoon 

chaotic behaviour in an insurance pricing effective-

ness framework for the actual analysis. 

MATERIAL AND METHODS

Random and chaos model

The BDS statistics is a statistics quantity, the evalu-

ation of which may be considered to be a test again 

a null hypothesis that a sequence of numbers is i.i.d 

(Dickey and Fuller 1979, 1981). The BDS statistics 

is defined as 
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Note that the time-adjusted monetary value of losses 

should be adequate for the validation of Equation (3) 

from the government reported.
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where:

X = adjusted rice loss 

X0 = unadjusted rice loss

I = agricultural Income price index (crops type)

The estimator σ
m,n

 is defined as
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The estimator σ
m,n

 is derived by Brock, Dechert 

and Scheinkman (1987). They showed that in the 

limit that n → ∞ 
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in which N(0,1) is a normal distribution with a mean 

of zero and the standard derivation of one for any 
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embedding dimension m. Therefore, from the calcu-

lated value of the BDS statistics W
m,n

 we can, from 

the probability associated with a normal distribution, 

find the change that the sequence of the numbers 

could be produced by an i.i.d process. 

Correlation dimension estimates

The correlation dimension defined by Grassberger 

Procaccia is given by 

][/][),( , eLogCLognmCD nm  (8)

and the statistical correlation dimension (SCD) de-

fined by Foulkes is given by 

),/(][),( ,1, nnm CmCLognmSCD    (9)

in which C
m,n

 is defined in (2). e is the standard deri-

vation of the data sets. 

Rescaled range analysis

In this section, we will use the rescaled range (R/S) 

method of the nonlinear analysis to study the correla-

tion properties in our data sets. The method is related 

to the evaluation of the Hurst scaling exponent, H. 

Different values of the Hurst exponents correspond 

to different correlation properties. For the sequence 

represented by the data set X(i), i = 1, …, n, we cal-

culate the running average X(i) and the accumulated 

deviations from the average X(l, i)
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The quantity called the range R(i) of X(l, i) and 

the standard deviation S(n) are defined as follows: 

R(i) = Max
1≤l≤i

 X(l, i) – Min
1≤l≤i

 X(l, i) (12)
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The “rescaled range” is defined as a ratio between 

R and S, is R/S. The power law scaling according to 

Hurst is defined by

)(/)( iSiR ~ Hi   (14)

where H is the Hurst exponent. Note that a signal 

represents white noise (uncorrelated signal) then 

H = 0.5. The long-range correlations (memory) are 

in the chaotic system if H > 0.5. In practice, the scal-

ing exponent H is evaluated from the Log[R(i)/S(i)] 

vs. Log(i) plot using the least square fit procedure. 

Smooth transition autoregressive model 

In this paper, we also try to use the logistic (LSTAR) 

and exponential (ESTAR) autoregressive model to 

describe the data. We first describe the model and 

then describe the method of how to fix the parameter 

in the model. 

LSTAR and ESTAR models

The smooth transition autoregressive (STAR) model 

for the time series of data is defined as follows:

tt uxFx )()()( 220110  (15)

where u
t
 ~ nid(0, σ2),  are (p + 1) 

parameter vectors, and 

x
t
 = (x

1
, …, x

t–p
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is the vector of consisting of an intercept and the first 

plags of x
t
. F(x) is the transition function. The two 

specifications generally considered are the logistic 

function,
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and the exponential function
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where γ
L
 and γ

E
 are transition parameters, c

L
 and c

E
 

are the threshold values (location parameters). The 

d is the threshold lag (delay parameter). Equation 

(15) with the transition functions in Equations (17) 

and (18) yields the logistic STAR (LSTAR) and the 

exponential STAR (ESTAR) models, respectively.

Specification, estimation, and evaluation of 

models

The specification, estimation, and evaluation of 

the STAR models in this paper follow the procedures 

suggested and can be outlined as follows:

The maximum value of the lag p has to be determined 

from the data. The process x
t
 is referred to as an AR 

process of order p, AR (p), which can be written as 

 (19)
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and the AR (1) process can be simply written as

x
t
 = β

0
 + β

1
x

t–1
 +ε

t
 (20)

For a stationary AR (p) process, the autocorrelation 

function is non-zero at all lags and should converge 

to zero geometrically. On the other hand, the partial 

autocorrelation function of an AR (p) process should 

cut to zero for all lags greater than p. 

In order to make inferences on the time series, they 

must be stationary. However, most of the natural-

disasters-loss-time series do not satisfy the require-

ment of stationarity, so that they have to be converted 

to stationary processes before modelling. Many test 

statistics have been developed to check whether the 

series contains the unit root or not. The most popular 

of them are the augmented Dickey-Fuller (ADF) test 

(1979, 1981) and the Phillips-Perron (PP) test (1988). 

Dickey and Fuller consider three different equations 

that can be used to test:

In the ADF test, we have to specify whether to 

include a constant, a constant and linear trend, or 

neither in the test regression,

tjt
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                                       (Trend and Intercept) (23)

H
0
: r = 0 vs H

1
: r < 0  (24)

With the ADF test, there is the problem of selection 

of the lag length. The first equation written above 

is a pure random walk model, the second equation 

adds an intercept or drift term, and the last one in-

cludes both a drift and a linear time trend so that it 

is possible to test whether the trend that the series 

exhibits is deterministic or stochastic. In all of the 

above equations, H
0
: r = 0 is tested. If the null hy-

pothesis is rejected, the sequence does not contain a 

unit root. The estimation technique is the Ordinary 

Least Squares (OLS). The calculated test statistic is 

compared by the critical values reported in the ADF 

tables. The AIC and SIC are used often but they have 

been found to select a low value of the lag length. 

Phillips and Perron proposed a nonparametric 

method of controlling for the higher-order serial 

correlation in a series. The test regression for the 

PP test is the AR 

 x
t
 = c + ρx

t–1
 + ε

t
  (25)

while the ADF test corrects for the higher order serial 

correlation by adding lagged differenced terms on 

the right-hand side, the PP test makes a correction 

to the t-statistic of their r coefficient from the AR(1) 

regression to account for the serial correlation in ε
t
. 

Alternatively, the structure of the AR process can 

be determined by using the model selection criteria. 

The most famous ones are the Akaike Information 

Criterion (AIC) and Schwartz Information Criterion 

(SIC): 

AIC = T ln(residual sum of squares) + 2n (26)

SIC = T ln(residual sum of squares) + n ln(T) (27)

where T is the number of usable observations, and 

n is the number of parameters to be estimated. In 

practice, several AR models are estimated, and the 

one with the smallest AIC or SIC is selected as the 

best model.

If linearity is rejected for more than one value of d, 

we choose the one for which the p-value of the test 

is the lowest. Testing the null hypothesis H
0
: γ = 0 

in (37) with either (39) or (40), assuming that x
t–d

 is 

stationary and eroded under H
0
, is a non-standard 

testing problem since (37) is only identified under the 

alternative H
0
: γ ≠ 0. To solve the problem, Terasvirta 

(1994) followed the Davies’ procedure, where an 

auxiliary regression with the unidentified values kept 

fixed in which transition function in (37) is replaced 

by its third-order Taylor approximation, to derive a 

Lagrange multiplier-type test that has an asymptotic 

χ2-distribution. Therefore, the problem is solved by 

estimating the auxiliary regression as 

        

         (28) 

where ê
t
 are the residuals of the linear model, and 

then testing the null hypothesis H
0
: β

2i
 = β

3i
 = β

4i
 = 0, 

i = 1, …, p, against the alternative that is not valid. In 

practice, the Lagrange multiplier-type test of linear-

ity is replaced by the F-test in order to improve the 

size and power of the test. Equation (28) is estimated 

across a range of values for d and  max...,,2,1 dDd  . 
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When the delay parameter d is known, then the lin-

earity test is identical to testing the joint restriction 

that all nonlinear terms are zero as in the following 

null hypothesis.

Considering the value of d as given and using a 

sequence of tests nested in (28) to choose between 

the ESTAR and LSTAR models. Such a sequence is: 

H
04

: β
4i

 = 0 (29) 

H
03

: β
3i

 = 0 | β
4i

 = 0 (30)

H
02

: β
2i

 = 0 | β
3i

 = β
4i

 = 0 (31)

It is based on the relationship between the param-

eters in (28) and (15) with either (16) or (17). We 

use the H version of this test following the above 

processes. If H
04

 is not rejected but H
03

 is rejected, 

we would adopt the ESTAR model. If both H
04

 and 

H
03

 are not rejected but H
02

 is rejected, then we se-

lect the LSTAR model. If the p-value of the test of 

H
03

 is the smallest of the test in the model selection 

sequence (the p-value of the test of H
04

, H
03

, H
02

), 

select an ESTAR; if not, we choose a LSTAR model. 

The estimation of linear and STAR models starts 

with including all lags from 1 to p, and the insignificant 

ones are dropped through the estimation procedure 

to conserve the degrees of freedom. The estimation 

of STAR models is carried out using the nonlinear 

least squares.

AR(m)-GARCH(p, q) MODEL 

In this paper, we investigate the rice loss over time 

into AR(m)-GARCH(p, q) model which the non-

linear models allow for the shocks to fluctuation. 

A typical AR(m)-GARCH(p, q) model is one of the 

existing methods to estimate the loss severity for 

forecasting. This approach utilizes two models: one 

for the conditional mean specification (μ
t
 or S

tx ) and 

the other for the conditional variance specification 

(h
t
) of the loss severity error series. The mean equa-

tion can be defined from the class of models un-

der the AutoRegressive Moving Average (example: 

AR(m)), while the variance specification, usually 

follows the generalized AutoRegressive Conditional 

Heteroskedasticity (GARCH(p, q)) model. The major 

model utilized in this paper is the AR(m )-GARCH(p, 

q) model as follows: 

The AR(m)-GARCH(p, q) model to be estimated:
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and the conditional variance of S
tx  is GARCH(p, q)
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where the model S
tx  follows an AR process con-

ditioned on the information set at time t – 1 of the 

loss severity due to the typhoon at t and h
t
 follows a 

GARCH process. Terms S
tx  and h

t
 are the expected 

loss severity and the conditional variance, respectively. 

The mean of the loss severity ( S
tx ) is a function of a 

constant (c
0
), the autoregressive model parameters 

(c
i
) and the unconditional variance of e

t
 is finite, 

whereas its conditional variance 2
th  evolves over 

time. The variance (h
t
) is a function of an intercept 

(α
0
), a shock from the prior period (α

j
) and the vari-

ance from the last period (β
k
). In practice, fixing 

of the premiums depends not only on the past loss 

experience, but also on the prospects related to the 

crop-specific factors on the area of cultivated land 

(a), the average harvest per ha (g) and the price of rice 

(r) besides being influenced by the lag period of rice 

damaged whether the losses fluctuation changes over 

the time and if so, whether it is predictable. Finally, 

the AR(m)-GARCH(p,q) model in the mean exten-

sion had been used to examine the relation between 

the loss frequency/severity and the loss cost in the 

actuarial situation. 

Forecast performance 

To evaluate the forecast performance, we employ 

the Mean Absolute Error (MAE), the Root Mean 

Square Error (RMSE), the Revised Theil Inequality 

Coefficient (RTIC) and the Mean Absolute Percentage 

Error (MAPE): 
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and


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


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x
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N
MAPE

1

1
  (38)

where N is the number of predictions, x
t
 is the actual 

observation and 


tx is the forecasted value. The model 

that yields a smaller value in all such criteria signifies 

its superiority against other models. The overall out-of 

sample models is summarized in section 3. 

Loss cost with a chaotic behaviour

The expected loss obviously is an important ele-

ment that affects the retention ability for the non-

insurance plan (relief program) and the insurance 

pricing. However, the loss cost analysis has been a 

popular method with many successful applications 

for the actual science, insurance financial and for 

the relationship between the risk measurement and 

decision making (e.g., pricing). In the collective 

models, we require the frequency of losses for the 

entire portfolio, (N), is the sum of the loss frequen-

cies by N = N
1 

+ … + N
n
. The aggregate loss for the 

portfolio was modelled by S = X
1 

+ … + X
n
, each with 

losses like X
i
 where X is non-negative. Furthermore, 

the loss amounts are assumed to be independent 

of N. Here the expected aggregate loss E(S) in the 

compound distribution is simply the product of the 

expected value of loss frequency E(N) and of the 

severity E(X). This paper introduces the principle 

of the aggregate loss cost G(S) for the loss portfolio 

that is determined by 

)(SE = bestfittedNSEE ]][[  

         = bestfittedbestfitted NEXE )(][    (39)

         = )(SG  

From Equation (39), there can also be obtained an 

approximation of the total loss cost over the individual 

risks X
1
 by charging the following premium:

P(X
i
) = E[X

1
]  (40) 

If the insurer charges a loss cost allocated R(S) 

per ha on area of cultivated land (a) of the from 

Equation (39) 

R(S) = G(S)/a  (41)

EMPIRICAL RESULT 

Data collection

Substituting the forty-two years data in Taiwan into 

the above formula, we have the following results. We 

consider the data, which record the major natural 

disasters loss amounts of rice in Taiwan over the 

years 1971–2012 and is available at http://www.coa.

gov.tw. According to the government reports, there 

were about 10 kinds of nature disasters loose. Since 

59.62% losses are due to typhoon, we only consider 

this disaster loss in our analysis. By adjusting for the 

inflation, the rice loss data were made comparable 

through the years; all monetary magnitudes reported 

in this paper are in 2001 US Dollar (USD). The overall 

summary statistics for rice losses are shown in Table 

1. First, the average and standard deviation of the loss 

amount caused by each typhoon was 8.99 and 14.32 

million from 1971 to 2005. The data are considerably 

skewed to the right. The skewness coefficient is equal 

to 5.4 for typhoons in Taiwan, which could be used to 

perform the forecasting of the loss frequency-severity 

due to typhoons 2006–2012. 

BDS test results

From the formulation in section II, we can use the 

thirty-six years data of the frequency and the rice 

Table 1. Rice losses summary statistics (Million USD)

Min Max Mean Median
Standard 
Deviation

Skewness Kurtosis

21 114.72 8.99 0.738 14.32 5.4 35.3

Source: Taiwan Agricultural Yearbook (1971–2005)

Table 2. BDS statistics of frequency and rice damage

e
Embedding 
dimension

BDS (Typhoon 
frequency)

BDS (Rice 
damage)

1 2 2.9945 1.5515

1 3 5.3918 1.2407

1 4 6.7869 0.6848

1 5 7.0014 0.8605
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damages due to typhoons in Taiwan to calculate the 

BDS statistics. The results are shown in Table 2. In 

Table 2, we see that the values of the BDS statistics of 

the frequency of typhoons are larger than 3 and the 

hypothesis of i.i.d can be rejected with 99% confidence. 

Thus the time series of typhoons shows a chaotic 

behaviour and the associated rice damage is random.

Grassberger and Procaccia test results

We now analyse the time-series data by the 

Grassberger-Procaccia correlation integral. The 

results are shown in Table 3 in which we present 

the estimated correlation dimensions (CD) and the 

statistical correlation dimension (SCD) for our time 

series. We have changed the embedding dimension 

m from 2 to 9. After calculating the CD and SCD, 

the estimates of the frequency of typhoons and the 

associated rice damage are reported in Table 3 which 

shows that the CD and SCD estimate of the frequency 

of typhoons does not have any tendency towards 

convergence. Thus the underlying system is chaotic. 

On the other hand, the CD and SCD estimates of the 

rice damage show an oscillating behaviour, which 

may be a random system. 

Rescaled range Test

We also use the thirty-six years data of the frequency 

of typhoons in Taiwan to plot the diagram in Figure 1. 

The slope is 0.655 which has a derivation from 0.5. 

This shows that the frequency of typhoons in Taiwan 

is a chaotic behaviour.

The calculations using the least square fit proce-

dure to Figure 1 give the following value of the Hurst 

exponent

 H = 0.6555 (Frequency of Typhoon)  (42)

As H > 0.5, the frequency of typhoons in Taiwan 

has a derivation from the random, which, therefore, 

is a chaotic behaviour.

We next use the thirty-six years data of the rice 

damages due to typhoons in Taiwan to plot the dia-

gram in Figure 2.

The slope is less than 0.5 which shows that the rice 

damaged due to typhoons in Taiwan is approximately 

a random dynamics.

The calculations using the least square fit proce-

dure to Figure 2 give the following value of the Hurst 

exponent

H = 0.4564 (Rice Damaged Due to Typhoons) (43)

Thus the rice damaged due to typhoons in Taiwan 

is approximately a random dynamics.

Testing for non-stationary

In this subsection, we will determine the value 

of p lags. It is important to check whether a series 

is stationary or not before using it in a regression 

for forecasting the loss frequency and severity. The 

Figure 1. Diagram of Log[R(i)/S(i)] vs. Log(i) for the 

frequency of typhoons in Taiwan

Figure 2. Diagram of Log[R(i)/S(i)] vs. Log(i) for the rice 

damaged due to typhoons in Taiwan

Table 3. CD and SCD estimates frequency and the rice 

damage

m
CD

(Frequency)
SCD

(Frequency)
CD(Rice 
Damage)

SCD(Rice 
Damage)

1 1.3446 0.9399 0.0906 1.0663

2 1.8204 0.8480 0.1372 1.0835

3 2.2348 0.7807 0.1788 1.0593

4 2.6983 0.7541 0.2311 1.0953

5 3.2887 0.7659 0.1244 1.0476

6 3.7196 0.7425 0.1500 1.0824

7 4.2396 0.7405 0.1731 1.0928

8 4.7456 0.7368 0.1926 1.0812
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formal method to test the stationary of a series is the 

unit root test. The results of the typhoon frequency 

and rice damage in Taiwan which shows that the 

Taiwan’s typhoon frequency and the rice damage 

data series are not stationary at the level form but 

stationary after the first difference at the 1% and 5% 

significance levels in this case. A simple autoregressive 

(AR) model was fitted to the typhoon frequency and 

rice damage data. The lag structure was determined 

by using by the Akaike Information Criterion (AIC) 

and the Schwarz Information Criterion (SIC). The 

most significant lags were 1, 2, 3, 4 and 5. Here, p is 

the number of lags in the linear AR model. It shows 

that the model that minimizes the AIC or SIC is the 

AR (1) process in both the typhoon frequency and 

the rice damage data series on the ESTAR model in 

this case. 

Determination of the delay parameter and 

testing for non-linearity

In this subsection we, will determine the value of 

the delay parameter d. To test the model’s linearity, 

we consider a set of plausible values for the delay pa-

rameter (d), which ranges from 1 to 8. The optimum 

value of (d) is chosen based on the minimum P-values 

of the F-test statistic. Our calculation shows that the 

p-value (F-stat) for d = 4 is minimum (maximum) for 

the typhoon frequency data series. The rejection of 

linearity against the ESTAR is strongest when d = 4 

(as p-value is minimum when d = 4). The decision 

rule is to select the ESTAR model if the p-value of 

the test of H
03

 is the smallest p-value of the test in 

the model selection sequence (the p-value of the 

test of H
04

, H
03

, H
02

). We conclude that the ESTAR 

model is a more appropriate model for the typhoon 

frequency. Using this result the test the statistics 

for various hypotheses concludes that the ESTAR 

model is a suitable model with d = 4 for the typhoon 

frequency data series. In the same way, the ESTAR 

model is selected if the p-value of the test of H
03

 

is the smallest of the three. We conclude that the 

ESTAR model is a suitable model with d = 1 for the 

rice damage data series. 

ESTAR and linear models

The exponential smooth transition autoregressive 

(ESTAR) mo dels which we find are the following:

(1) Typhoon frequency: 

F

tx  (Equation 44 and 45)

The root mean square error values of the ESTAR 

model and the linear model are 4.0573 and 4.1657, 

respectively. Thus the ESTAR model is more suitable 

to forecast the data than the linear model. This is con-

sistent with the analysis that the typhoon frequency 

shows a chaotic behaviour.

(2) Rice damage: 

S

tx  (Equation 46 and 47) 

The root mean square error values of the ESTAR 

model and the AR(1)-GARCH(1,1) model is 0.3144 

and 0.2826, respectively. Thus the AR(1)-GARCH(1,1) 

model is more suitable to forecast the data than 

the ESTAR model. Note that the time series of the 

loss severity due to the typhoon may have a chaotic 

behaviour if the variation of parameters is large 

enough in the Equation (47). This is consistent with 

the analysis in the section smooth transition autore-

gressive model that the rice damage shows a random 

behaviour. In natural disasters, many phenomena 

appear more unstable, and it is here that the chaos 

theory has the most relevance. A chaos-based risk 

assessment model may capture the complexity of 

natural disaster with more verisimilitude than the 

traditional statistical analysis, when we are trying 

to understand the broad-based phenomena such as 

 )])5069.5(5737.0exp(1[)0161.0457.1( 2
41

F
t

F
t

nonlinearF

t
xxx           Nonlinear model – ESTAR (44)

F
t

linearF

t
xx 12209.08158.3                                                                                          Linear model  (45)

])0271.2(0313.0exp(1)[6190.01567.0(6447.01567.0 2
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the arrival of the typhoon issues and the associated 

rice damage, we should assume typhoons are dealing 

with a chaotic system and consider fitted methods 

aimed at understanding, rather than the quantita-

tive ones aimed at the prediction and control. We 

see that the values of the BDS statistics of the fre-

quency of typhoons in Taiwan are larger than 3 and 

the hypothesis of i.i.d can be rejected. Thus the time 

series of typhoons shows a chaotic behaviour and the 

associated rice damage is random. The results show 

that the loss distribution process is heavy-tailed, 

which implies that it is also non-normal. In Table 

2, we have also estimated the statistical correlation 

dimensions (SCD). The main advantage of the SCD 

over the GP correlation dimension is that it gives 

statistically more reliable results for a small sample. 

Note that although the earlier research in econom-

ics has relied heavily on the correlation dimension 

(CD) estimation techniques for the chaos tests, the 

limitations of this approach are, by now, well known, 

for instance. The main point is that the correlation 

dimension methodology lacks an underlying sta-

tistically theory: it is basically a graphical analysis 

that requires typically very large data sets. Thus the 

correlation dimension estimations performed with 

small data sets might be indeed very misleading. 

We also use the correlation dimension estimates 

and the Hurst rescaled range analysis to confirm the 

properties. Our analysis finds that the typhoon is a 

chaotic behaviour while the associated rice damage 

is random. This may mean that the rice damage has 

other factors, such as the effect of temperature, 

the demand for water, resistance to environmental 

stresses, the space/time of each event. A simple au-

toregressive (AR) model was fitted to the typhoon 

frequency and rice damage data. Our results show 

that the Taiwan’s typhoon frequency and the rice 

damage data series are not stationary at the level 

form but stationary after the first difference at the 1% 

and 5% significance levels. Using this result the test 

statistics for various hypotheses is shown in section 

3.5, which concludes that the ESTAR model is a suit-

able model while with d = 4 for typhoon frequency 

data series and with d = 1 for the rice damage data 

series. These are consistent with the analysis that the 

typhoon frequency shows a chaotic behaviour and 

the rice damage shows a random behaviour. While 

the investigations are the special properties of our 

input data of Taiwan, the prescription of this paper 

could be applied to the other natural disasters of 

other countries.

ROBUSTNESS TEST 

The robustness test for the forecasting 

performance on the loss frequency and severity

To test the robustness, we find the loss severity 

of rice damages clearly influenced by typhoons. 

Throughout the forecasting performance in the MAE, 

RMSE, RTIC and MAPE models on the frequency and 

severity of loss due to typhoons and the out-of sample 

2006–2012 is summarized in Table 4. The result of 

the assessment shows that the nonlinear model with 

chaotic behaviour that yields a smaller value in all such 

forecasting performance in different models signi-

fies the MAE or RTIC criteria its superiority against 

Table 4. Forecasting performance on the loss frequency-severity due to Typhoons 2006–2012

Measures

Forecasting models performance

Nonlinear model with 
chaotic behaviour

Linear with random walk model
Traditional statistics with 

the distribution fitted

Loss Frequency

MAE 0.0930 0.5012 0.2027

RMSE 0.2116 1.1547 0.5010

RTIC 0.3522 1.9261 0.8337

MAPE 0.0779 0.4507 0.1539

Loss Severity (million) 

ARMA (1,1) AR(1)-GARCH (1,1) AR(0)-GARCH (0,0)

MAE 2.9164 2.8414 2.6244 3.2570

RMSE 11.8355 11.5741 10.5405 9.8432

RTIC 1.0563 1.0563 0.9407 0.8785

MAPE 1.2883 1.2883 4.8941 14.1173 
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other models on the time series of typhoons. The 

loss severity of rice is described by the linear model 

while the model based on the AR(1)-GARCH (1,1)is 

the best performing model on the rice loss severity 

due to typhoons. The AR (1)-GARCH (1,1) can be 

combined with all or some of these models together 

to get more complex “mixed” models which will be 

sufficient and to capture the volatility clustering of 

the loss severity to avoid overfitting in the data. As 

for the damages size predictions, the result has a 

reasonable effect as the local government regulates 

the reporting of the loss severity and it might be 

dependent of the dynamics of the random walk and 

not explained well by the chaotic mechanism. 

Estimating loss and forecasting performance in 

different models

This paper investigates a nonlinear collective risk 

model which is a feasible scheme for estimating the 

annual aggregate losses and it also focuses on using 

the chaos theory to fit the loss frequency and loss 

severity of distribution to rice damages due to ty-

phoons which have been observed. It is shown that the 

annual frequency of rice damage caused by typhoons 

is best fitted well by the AR(1)-GARCH (1,1) model 

while the associated rice damage is described by the 

linear model. The pure risk premium should in theory 

match the expected loss expenditure as Equation (39). 

This paper first proposes that the expected annual 

aggregate loss with the chaotic behaviour obviously 

is one of the important elements that affects the 

retention ability for the non-insurance plan (relief 

program) or the insurance pricing. In the cases, when 

the average loss is under per ha of the damaged area, 

it is simply calculated from Equation (40). When the 

considerations are extended to cope with the insur-

ance market, as Equation (41) or in Table 5, problems 

arise in accounting for the ensuing effects. 

Note that this paper cannot conclude, however, 

that a market premium will be affected by the load 

premium (such as the safety loading, expenses loading, 

profit loading, contingencies loading and govern-

ment regulated). We know that there are numerous, 

variable risks that influence agriculture (Vávrová 

2005) and the relationship between natural disasters 

and crop yields should be a complex issue. However, 

various uncertainties and market factors may have 

consequences which it is an important issue to know 

about and to take into account.

CONCLUSION 

A nonlinear mixing collective risk model is appli-

cable to estimate the annual aggregate rice losses. 

Some typical risk measures of the chaotic behaviour 

distribution, such as the expected annual aggregated 

loss and the moment generating functions are also 

estimated. These quintile measures could provide 

useful information for the Council of Agriculture 

to check the applicable risk of the financing regula-

tions and an adjustment of the natural disaster relief 

budget plan or the insurance premium. In this paper, 

we first use the statistical analysis to show that the 

BDS statistics of the time series of typhoons is a 

chaotic behaviour while the associated rice damage 

is random. We also use the correlation dimension 

estimates and the Hurst rescaled range analysis to 

confirm the properties therein. Note that although 

the weather is a non-linear dynamics and thus the 

frequency of typhoon is a chaos, the rice damages due 

to typhoons do not show a chaotic behaviour except 

that the variation of parameters is large enough. 

We next consider the two families of nonlinear 

autoregressive models, the logistic (LSTAR) and the 

exponential (ESTAR) autoregressive model to describe 

the data. We first determine the delay parameter 

therein and attempt to make a choice between the 

LSTAR and ESTAR. Our investigations have shown 

that the time series of typhoons are described by the 

ESTAR, while the associated rice damage is described 

by the AR(1)-GARCH(1,1) model. This is consistent 

with the analysis in the previous section that the 

rice damage shows a random behaviour while the 

time series of typhoons is a chaotic dynamics. Our 

investigations show that as a robustness check, this 

paper also estimated that the forecast value errors of 

nonlinear are significant in comparison to the linear 

model under the loss frequency estimated, and the 

forecast value errors of four models forecasts are 

statistically significantly under loss severity estimated 

on the crop damage. This paper discusses the effect 

Table 5. The aggregate loss cost and per ha loss cost 

allocated in the typhoon case 2006–2012 (USD)

Estimated value 
AR(1)-GARCH(1,1)

Actual value

Aggregate loss cost 
G(S) 

15 884 326 15 610 969

Loss cost allocated 
G(S) per ha 

19.3866 19.0530
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of typhoon on the rice yields. The result of the as-

sessment shows that the model based on the AR(1)-

GARCH(1,1) model is the best performing model on 

the rice loss severity due to typhoons. The insurance 

pricing is unavoidably, but there is also uncertainty 

due to the fact that the environment such as the cul-

tivated land under crops, the average harvest per ha 

and the price of rice, etc. are changing all the time. 

The properties we found are useful in the loss cost 

or risk retention estimates about the crop damages 

due to typhoons in Taiwan and our algorithm may 

be applied to other disasters and other countries. 
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