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Analysis of the efficiency of production processes 

became the focus of interest on the part of econo-

mists in the 1950’s and this trend was initiated by 

the studies of Debreu (1951) and Farrell (1957), in 

which a measure of technical and overall efficiency 

of production was introduced. In the course of years, 

several analytical methods have been developed to 

evaluate technical efficiency. Many details on the 

early history of efficiency analysis may be found in an 

interesting study by Førsund and Sarafoglou (2002). 

These methods in terms of applied methodology rep-

resent two fundamentally different approaches. The 

first one, i.e. the parametric approach, initiated by 

the studies of Aigner and Chu (1968), Timmer (1971) 

and Afriat (1972), uses the concept of the produc-

tion function and is based on a respectively modified 

regression analysis. It includes such methods as the 

corrected ordinary least squares (COLS), the modi-

fied ordinary least squares (MOLS), or the stochastic 

frontier analysis (SFA). In turn, the other approach, 

i.e. the non-parametric one, in its mature form ap-

peared slightly later, with a study by Charnes et al. 

(1978), and it is based on the solution of an adequately 

formulated problem of mathematical programming. 

In this respect, we need to mention several variants 

of the data envelopment analysis (DEA).

A considerable number of methods dealing with 

the same problem suggest a natural question on the 

consistency of results obtained using different ana-

lytical techniques based on an identical set of data. 

In such a situation, it is expected that all methods 

should lead to an identical or at least similar as-

sessments of efficiency. However, it turns out that 

such a consistency is problematic. In the paper by 

Sharma et al. (1997), rather divergent estimates of 

technical efficiency were obtained. Similarly, in a 

study by Cubbin and Tzanidakis (1998), the authors 

showed that the application of the parametric and 

non-parametric approaches on the same data set can 

produce conflicting efficiency results.

The attempt to reduce the above mentioned dis-

crepancies in the efficiency analysis has contributed 

to the creation of an intermediate method, combining 

the parametric and non-parametric approaches. Such 

a solution was proposed by Arnold et al. (1996). The 

suitability of such a combined approach was presented 

in the paper by Bardham et al. (1998), where the re-

sults of extensive simulation studies were presented, 

which aim was mainly to evaluate the production 

function in the view of observations of many inef-

ficient units. In simulation studies, the sample size 

is usually large and when generating observations, a 

previously established form of the production func-

tion is used. In turn, in empirical investigations the 

form of the production function is not known and 

the size of the sample frequently is not large. Thus it 
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is still required to improve the estimation methods, 

so that reliable and objective estimates of efficiency 

may be obtained. This is possible after uncovering 

the sources of discrepancies and proposing methods 

of their elimination. The main aim of this study is to 

propose a new approach which combines and utilizes 

the strengths of the parametric and nonparametric 

methods. A special emphasis is placed on the sim-

plicity of the analysis. Two empirical examples of the 

application of this proposed approach connected with 

the agricultural sector are presented, too.

MATERIAL AND METHODS

Parametric approaches

The main vehicle of parametric approaches is a 

production function. It reflects a direct relation be-

tween inputs and usually a single output. Although the 

production function does not describe any particular 

production process, it mimics some processes in the 

sense that some inputs, represented here by a vector 

variable x, are indispensable in creating an output 

y. Thus, the production function describes only the 

technological conditions of the production process. 

Usually, it is expressed in the form 

y = f(x) = f(x; b)

where b is a vector of parameters characterizing the 

production technology of the given set of decision 

making units (DMUs). 

The functional relation between inputs x and an 

output y should fulfil some obvious and some de-

sirable requirements. The most obvious one states 

that x = 0 implies y = 0, i.e. f(0) = 0, and that f(x) is 

increasing in all inputs. The other conditions specify 

the functional form of f which reduces the choice to 

continuous, homogeneous and concave functions. 

Probably the most popular in terms of the number 

of applications is the Cobb-Douglas production func-

tion which, when the elasticity of scale is not greater 

than one, fulfils all the aforementioned requirements. 

Moreover, modelling with the Cobb-Douglas func-

tion leads to simple models which are parsimonious 

in parameters having direct economical interpreta-

tions. This feature is especially important when a 

set of DMUs is small. The next in popularity is the 

translog production function, which, however, fulfils 

the basic requirements under very specific additional 

data dependent conditions. 

A deterministic frontier production function is 

defined as the theoretical maximum output that a 

producer can obtain from the given vector of inputs. 

Having chosen the form of the frontier production 

function y = f(x), the output oriented technical ef-

ficiency is measured by the quotient TE = y/f(x) ≤ 1. 

This quantity, referred to the i-th unit which pro-

duces an output yi from a vector xi of inputs, can be 

interpreted as the factor rescaling the value of the 

frontier production function to obtain the actual 

level of output, i.e. yi = f(xi)TEi.

The simplest way of establishing the frontier pro-

duction function is the COLS method. It is performed 

in two steps. First, using the observations (yi, xi), i = 

1, 2, …, n, of the given set of DMUs, the estimate of 

f(x; b) is evaluated. It can be done by the ordinary least 

squares regression, because the production function 

is usually linear in the logs of the variables. Then, the 

resulting function ln f(x; b) is shifted upwardly with 

respect to the largest positive residual a = max(ei). 

In consequence, the log of the frontier production 

function has the form

ln f(x) = ln f(x;b) + a

and 

TEi(a) = exp(ln yi – ln f(xi)) = exp(–ui)

where ui = a – ei ≥ 0 is the measure of the output-

oriented technical inefficiency in the COLS method. 

The shifting term may also be chosen according to 

a different rule, taking into account some specific as-

sumptions about the distribution of ui. If it is assumed 

that they follow an exponential distribution, then 

ln f(x; b) should be shifted by the standard deviation 

of residuals, sD, following from the regression analysis 

(e.g. Greene 2008: 106). This is the simplest variant 

of the MOLS method. In such a case, however, not 

all estimated inefficiency measures are positive, since 

sD < max(ei). As a result, some units can appear to 

be technically over-efficient. These over-efficiencies 

may be caused by some specific conditions of the 

production process, which were beyond the control 

of the DMUs. Therefore, to preserve the sense of 

the technical efficiency concept, the over-efficiency 

must be truncated, i.e. TEi(sD) = min{exp(–sD + ei), 1}.

Note, moreover, that rescaling all exp(–sD + ei), 
i = 1, 2, …, n, by their maximal value is useless in this 

matter, because such a rescaling leads to the efficien-

cies of the COLS approach. It is so, since a shift of 

lnf (x; b) by any scalar s gives efficiencies proportional 

to TEi(a). Indeed TEi(a)/TEi(s) = exp(s – a) = constant. 
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An idea of incorporating into the model the con-

ditions not controlled by the DMUs resulted in the 

stochastic frontier analysis (SFA). In this approach, 

initiated by Aigner et al. (1977) and Meeusen and 

van den Broeck (1977), the frontier production func-

tion, contrary to the previous deterministic case, is 

assumed to be stochastic, 

y = f(x)exp(v)

where v is a random variable representing distur-

bances that are not dependent on the DMUs. To obtain 

the level of the output observed, it must be again 

rescaled by an additional term TE = exp(–u), where 

u is now a nonnegative random variable represent-

ing the technical inefficiency. In consequence, the 

stochastic frontier production function is estimated 

in presence of the standard disturbance term v, as in 

the regression model, and the technical inefficiency 

u, the latter term introducing into the model some 

additional and specific assumptions concerning the 

form of the probability distribution. The change in 

the form of the frontier production function, which 

is now a random variable, also causes a change in 

the understanding of the measure of the technical 

efficiency. In the stochastic approach, it is related 

with the quotient of two conditional expected values, 

TE = E(y|u)/E(y|u = 0) (e.g. Battese and Coelli 1992). 

The expectation E(y|u) represents the averaged level 

of output y (averaged with respect to the conditions 

not controlled by the producer), while E(y|u = 0) also 

represents the averaged output y, but for the produc-

tion process being technically the most efficient. 

Non-parametric approaches

The main idea of non-parametric approaches fo-

cuses on formulating a series of appropriate linear 

programming problems, in which the most efficient 

producers are identified in the observed set of DMUs. 

This idea, first pointed out by Farrell (1957), was 

fully elaborated by Charnes et al. (1978) and since 

then it has been known as the data envelopment 

analysis (DEA). In this method, the efficiency of 

each producer is evaluated with respect to the given 

group of them, by comparing the observed outputs 

and vectors of inputs characterizing all producers 

under investigation.

A particular formulation of the linear program 

depends on the initial assumptions. They concern 

the type of orientation, which can be focused on the 

outputs maximization given the values of inputs, or on 

the inputs minimization given the values of outputs, 

and the type of technology restrictions, which can be 

the constant returns to scale (CRS) or the variable 

returns to scale (VRS). Many other formulations of 

the DEA are reviewed by Thanassoulis et al. (2008) 

(see also Coelliet al. 2005; Cooper et al. 2007).

In the case of a single output oriented DEA, which 

corresponds to the considerations of Section 2, and 

under the CRS assumption, an estimate of the techni-

cal efficiency of the i-th producer follows by solving 

a linear program of the form:

Max
q,l

 q, subject to: –qyi + yλ ≥ 0, xi – Xλ ≥ 0, λ ≥ 0

where yi and xi represent the output and the vector 

of inputs, respectively, of the i-th unit, while y and 

X are the vector of outputs and the matrix of inputs, 

respectively, of all producers in the sample. The score 

of technical efficiency of the i-th unit is the inverse 

of solution θ, TEci = 1/θ. When TEci is equal to one, 

the i-th producer is a frontier, i.e. the most efficient 

producer in the whole set of the DMUs. 

When the CRS restriction is replaced by the VRS, the 

above formulated linear program changes by adding 

the condition that all λ’s sum to one. This convexity 

constraint envelops the data set more tightly, which 

now is covered by the convex hull rather than the 

convex cone only, as in the case of the CRS. In con-

sequence, the corresponding estimate of the technical 

efficiency TEvi is not less than TEci for each DMU. 

Th e results of the DEA procedures are often employed 

as the dependent variable in the further analysis search-

ing socioeconomics sources of diff erences between the 

units’ effi  ciency (Assaf and Matawie 2009; Hu et al. 2009; 

Olson and Vu 2009; Assaf and Agbola 2011). However 

when comparing the non-parametric approaches with 

those based on the regression analysis (RA), which are 

presented in Section 2, the diff erences between them 

are easily visible. Th e RA methods require many specifi c 

assumptions concerning the form of the production 

function as well as they are related with the type of the 

probability distributions of random variables involved 

in the model. Moreover, the estimation of unknown 

parameters and effi  ciency scores is possible when the 

sample size, i.e. the set of the DMUs, is large, which 

is especially important for the SFA. 

The DEA approach is completely different. The 

assumptions are minimal and the sample size may 

be small. However, the DEA does not provide any 

explicit formula relating the output to inputs. Instead, 

it produces only some measures of efficiency or in-
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efficiency, which are related exactly with the set 

of DMUs under considerations. Some other differ-

ences between these two techniques are discussed 

by Cubbin and Tzanidakis (1998) and Sena (2003). 

These authors observed also that the DEA and RA 

approaches may give very different results. The other 

arguments supporting this observation can be found 

in papers by Ferrier and Lovell (1996), Sharma et al. 

(1997) as well as Sahoo et al. (1999).

The combined approach and its modification

In the paper by Arnold et al. (1996), a combined 

method of estimating the production function was 

proposed. This method is accomplished in two stages. 

First, the DEA is used to identify the frontiers in a 

set of DMUs. Next, the RA with a selected form of 

the production function is applied to all DMUs, but 

the regression model is supplemented by a dummy 

variable distinguishing between the efficient and 

inefficient units. In consequence, two production 

functions, for the frontiers and non-frontiers, are 

established. Having estimated the frontier produc-

tion function, the estimates of the technical effi-

ciencies of all DMUs may be obtained. Of course, 

some truncations of over-efficiency of some units 

are necessary. We will furthermore denote this ap-

proach as the DE+RA.

The method presented above, however, does not 

guarantee that the efficiencies obtained will be in 

full agreement with that following from the DEA. 

Although small differences may be easily explained 

by the differences in the computational procedures, 

large disagreements, if they take place, must have 

more severe causes. At this point, first of all note 

that the definitions of technical efficiency in the case 

of stochastic and deterministic frontier production 

functions are different, which causes difficulty in a 

direct comparison of efficiencies following from the 

SFA with those following from the other approaches. 

As to comparisons between the non-parametric 

approaches and those based on the deterministic 

frontier production function, it should be noted 

that in general the model assumptions of the RA, of 

the DEA(CRS) and of the DEA(VRS) are different. 

In consequence, they will produce different esti-

mates of technical efficiencies for the same data 

set. They will provide similar results only in special 

cases. Since the CRS assumption corresponds with 

the linear homogeneity of production function, we 

can expect similar efficiencies following from the 

DEA(CRS) and the standard regression approaches. 

They will be very close, if the data actually support 

this specific assumption. The question appears what 

if it is not the case.

If the condition of constant returns to scale is not 

satisfied, then the DEA(VRS) may produce efficiencies 

much more different from those following from the 

RA. To explain this, note that the VRS output ori-

ented linear program, as observed by Pastor (1996), is 

invariant with respect to any translation of the input 

vectors, provided that the shift is the same for all 

DMUs. It is not a property of the production function, 

since by the standard assumptions, it is increasing in 

all inputs and f(0) = 0. These assumptions imply in 

particular that even small non-zero inputs lead to a 

positive quantity of an output, while in practice, to 

obtain a positive amount of the output, some critical 

non-zero, unfortunately unknown, quantities of all 

inputs are necessary. This divergence can be reduced 

by a proper translation of the production function, 

i.e. by subtracting from the input vector x some vec-

tor δ of positive constants. Note that a shift of the 

production function from f(x;β) to f(z;β), where z = 

x – δ, does not change its shape. Of course, the role of 

the parameter vector β is not the same in both cases, 

and some attention should be paid when interpreting 

parameters in the economic sense.

To estimate the shifted production function, it suf-

fices to subtract the vector δ from input vectors of all 

DMUs. The choice of δ is an independent task. It can 

be treated as an additional vector of the parameters 

and estimated together with the vector β. But then the 

number of unknown parameters increases substantially 

and, moreover, the resulting model cannot be easily 

transformed to the linear form, even in the case of the 

Cobb-Douglas function. The other extreme possibility 

is an arbitrary choice of δ. However, a compromising 

solution is that based on results of the DEA(VRS). It 

can be achieved by shifting the input vectors along the 

vector δ composed of the minimal inputs observed 

in the data set. In consequence, the problem reduces 

to the choice of the length of δ. Since the set of fron-

tiers following from the DEA(VRS) is invariant with 

respect to any shift of the input vectors, the precise 

length of δ can be determined in such a way that the 

corresponding regression model following from the 

second stage of the analysis proposed by Arnold et al. 

(1996) will be the best fitted to the data. This can be 

done by fitting a series of regression models in which 

the length of the shift along δ successively increases. 
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In consequence, the resulting frontier production 

function f(z;b) enables the estimation of technical 

efficiencies of all DMUs. This method will be denoted 

by the DE+RAs.

Finally, note that the equation f(x) = f(z) implies 

the equality of the corresponding partial derivatives, 

which means that the marginal efficiencies following 

from both functions are the same. It is not in the case 

of elasticities. However, for the j-th input they can 

be simply recalculated as follows:

j
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where zj = xj – δj. Summing up elasticities e(xj) over 

all inputs, the elasticity of scale can be obtained. Note 

also that here elasticity ε(xj) is a function of xj, even 

in the case of the Cobb-Douglas production function.

Data 

To illustrate the considerations of the previous 

sections, we will examine two data sets. The first 

one concerns the production in the year 2001 of 34 

regions from Belgium (1 region), France (22), The 

Netherlands (1), Luxemburg (1) and the western 

part of Germany (9). The data were taken from the 

Farm Accounting Data Network. The value of the 

total agriculture production was used as the output 

variable. As the input variables, we had initially se-

lected total the utilized agricultural area, labour and 

materials, but the first variable, land, appeared to be 

insignificant and was eliminated from the analysis.

In the second example, we used the data set which 

was analysed by Farrell (1957) when he introduced 

the main idea of the DEA approach. This data set 

characterizes the agriculture production in the United 

States in the year 1952. Farrell has estimated the 

technical efficiencies of 48 states using, in particular, 

cash receipts from farming, with the home consump-

tion included, as the output, and various sets of input 

variables. In particular, he used the following: land, 

labour and materials.

Technical efficiencies were calculated by two 

nonparametric methods, the DEA(CRS) and the 

DEA(VRS), two regression methods, the COLS and 

MOLS, the combined method DE+RA and the pro-

posed one, the DE+RAs, with a shift of input vectors. 

In parametric approaches as well as in the combined 

ones we used the Cobb-Douglas function, which en-

sures the smallest number of free parameters.

RESULTS

Estimates of technical efficiencies for the first data 

set related to the EU agriculture are presented in 

Table 1. In the last columns, the elasticity of labour 

and materials as well as of scale are contained. They 

were calculated using the proposed DE+RAs method. 

The averages of these elasticities, 

ε (labour) = 0.145, ε(materials) = 0.992, ε (scale) = 1.137

indicate that the second input, materials, is the most 

effective and that the constant returns to scale as-

sumption is disturbed. 

The last two rows of Table 1 present Pearson’s coef-

ficients of correlation between the results following 

from the non-parametric and the remaining methods. 

The correlation between efficiencies obtained from 

DEA(CRS) and DEA(VRS) is not very high, which 

means that the constant returns to scale assumption 

significantly influences the resulting efficiencies. 

On the other hand, observe quite a high correla-

tion between efficiencies following from DEA(VRS) 

with those following from DE+RAs, which is in har-

mony with the established scale elasticity 1.137 > 1. 

Moreover, observe very high correlations between 

results of the DEA(CRS) and of COLS, and of MOLS, 

which means that in these methods the elasticity of 

scale is near to one. Indeed, the estimated logs of 

this function are as follows:

COLS: log f (x) = 0.563 + 0.127 log x
1
 + 0.907 log x

2
   

                             (0.581)       (0.022)           (0.052)

           ε (scale) = 1.034 (0.051)     R2 = 0.929

MOLS: log f (x) = 0.475 + 0.127 log x
1
 + 0.907 log x

2
  

                             (0.581)         (0.022)      (0.052)

             ε (scale) = 1.034 (0.051)

where x
1
 here represents labour, x

2
 denotes mate-

rials, R2 the coefficient of determination, while in 

parentheses the standard deviations of estimated 

parameters are given. 

On the other hand, frontier production functions fol-

lowing from the combined approaches take the forms:

DE+RA: log f (x) = –0.573 + 0.146 log x
1
 + 0.983 log x

2

                               (0.637)      (0.022)         (0.057) 

              ε (scale) = 1.130 (0.057)        R2 = 0.952 

DE+RAs: log f (z) =  3.893 + 0.126 log z
1
 + 0.636 log z

2

                                (0.365)      (0.017)        (0.033)

            ε (scale) = 1.136 (0.035)         R2 = 0.958
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where z
1 

= x
1
 – 53.18, z

2 
= x

2
 –33420.60. The transla-

tion vector δ in the DE+RAs method was equal to 60% 

of the vector (88.63, 55701.00) composed from the 

minimal values of both inputs. The minimal shift in 

the case of labour is not less than 2% (of the maximal 

observed labour), while in the case of materials it is 

not less than 15% (of the maximal observed value of 

materials). Thus the shift with respect to the second 

variable was much more restrictive. Note also that 

the frontier production function f(x) following from 

DE+RA is convex, while that with shifted input vari-

ables f(z), estimated by the DE+RAs method, and is 

concave as required. Comparing both methods we 

can notice that the proposed one provides efficien-

cies compatible with that following from the non-

parametric DEA (VRS) approach. 

The estimated efficiencies from the second data 

set related to the USA agriculture are contained 

in Table 2. This table is organized in the same way 

as the previous one, with the exception that now 

we have three inputs: land (x
1
), labour (x

2
) and 

materials (x
3
). 

Table 1. Estimates of technical efficiencies of agricultural production in 34 regions of EU

Regions
DEA Parametric methods Elasticity’s

CRS VRS COLS MOLS DE+RA DE+RAs labour materials scale

1 Belgium (BEL) 1.000 1.000 1.000 1.000 1.000 1.000 0.139 0.898 1.037

2 Hamburg (DEU) 1.000 1.000 0.951 1.000 1.000 1.000 0.131 0.955 1.086

3 Bayern (DEU) 0.945 1.000 0.899 0.982 1.000 1.000 0.163 1.121 1.284

4 Saarland (DEU) 1.000 1.000 0.941 1.000 1.000 1.000 0.316 0.930 1.246

5 Languedoc-Roussillon (FRA) 0.911 1.000 0.871 0.952 1.000 1.000 0.132 1.396 1.528

6 Provence-Apes-Côte (FRA) 1.000 1.000 0.950 1.000 1.000 1.000 0.129 1.108 1.238

7 The Netherlands (NED) 0.950 1.000 0.895 0.977 0.928 1.000 0.130 0.749 0.879

8 Champagne-Ardenne (FRA) 0.987 1.000 0.940 1.000 1.000 0.997 0.132 0.858 0.989

9 Corse (FRA) 0.825 1.000 0.795 0.869 0.930 0.996 0.133 1.589 1.722

10 Franche-Comté (FRA) 0.948 0.962 0.887 0.968 1.000 0.960 0.158 0.961 1.118

11 Auvergne (FRA) 0.844 1.000 0.809 0.884 0.963 0.956 0.169 1.289 1.458

12 Alsace (FRA) 0.918 0.967 0.886 0.968 1.000 0.953 0.134 1.037 1.171

13 Limousine (FRA) 0.770 1.000 0.761 0.832 0.912 0.949 0.163 1.490 1.653

14 Rheinland-Pfalz (DEU) 0.903 0.968 0.869 0.949 0.989 0.946 0.134 1.093 1.227

15 Bretagne (FRA) 0.906 0.946 0.883 0.965 0.960 0.946 0.134 0.825 0.959

16 Rhônes-Alpes (FRA) 0.887 0.959 0.854 0.933 0.974 0.933 0.134 1.108 1.243

17 Niedersachsen (DEU) 0.872 0.924 0.865 0.945 0.953 0.922 0.137 0.852 0.989

18 Hessen (DEU) 0.876 0.906 0.835 0.912 0.966 0.912 0.155 1.028 1.183

19 Schleswig-Holstein (DEU) 0.870 0.899 0.852 0.930 0.931 0.909 0.135 0.838 0.973

20 Baden-Württemberg (DEU) 0.864 0.901 0.838 0.915 0.947 0.896 0.135 0.999 1.134

21 Nordrhein-Westfalen (DEU) 0.858 0.865 0.839 0.917 0.926 0.891 0.135 0.872 1.008

22 Nord-Pas-de-Calais (FRA) 0.845 0.906 0.835 0.912 0.921 0.891 0.138 0.852 0.990

23 Basse-Normandie (FRA) 0.869 0.875 0.834 0.911 0.938 0.890 0.144 0.901 1.045

24 Pays de la Loire (FRA) 0.837 0.837 0.832 0.909 0.928 0.884 0.138 0.898 1.036

25 Lorraine (FRA) 0.871 1.000 0.797 0.871 0.885 0.865 0.151 0.828 0.979

26 Luxembourg (LUX) 0.819 0.836 0.804 0.879 0.897 0.857 0.140 0.884 1.025

27 Aquitaine (FRA) 0.852 0.858 0.807 0.882 0.891 0.854 0.131 0.941 1.071

28 Picardie (FRA) 0.805 0.909 0.787 0.860 0.847 0.852 0.134 0.798 0.932

29 Midi-Pyrénées (FRA) 0.762 0.876 0.752 0.822 0.870 0.837 0.140 1.159 1.299

30 Bourgogne (FRA) 0.809 0.809 0.786 0.859 0.874 0.833 0.135 0.909 1.043

31 Poitou-Charentes (FRA) 0.775 0.817 0.776 0.848 0.881 0.831 0.141 0.977 1.118

32 Haute-Normandie (FRA) 0.760 0.813 0.751 0.820 0.829 0.801 0.138 0.853 0.991

33 Île de France (FRA) 0.727 0.741 0.689 0.753 0.747 0.732 0.131 0.845 0.976

34 Centre (FRA) 0.710 0.715 0.681 0.743 0.749 0.720 0.133 0.884 1.017

Pearson’s 
correlations

1.000 0.759 0.974 0.965 0.870 0.851

1.000 0.728 0.744 0.813 0.925

Source: authors computation using FADN data
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Table 2. Estimates of technical efficiencies of agricultural production in the United States

States
DEA Parametric methods Elasticities

CRS VRS COLS MOLS DE+RA DE+RAs labour land materials scale

1 Rhode Island 0.940 1.000 0.751 0.890 0.982 1.000 0.511 0.163 0.561 1.235

2 Illinois 0.927 1.000 0.853 1.000 1.000 1.000 0.410 0.130 0.450 0.990

3 North Dakota 1.000 1.000 0.957 1.000 1.000 1.000 0.411 0.130 0.459 1.000

4 North Carolina 1.000 1.000 0.917 1.000 1.000 1.000 0.410 0.131 0.454 0.994

5 Florida 1.000 1.000 0.946 1.000 1.000 1.000 0.413 0.131 0.462 1.005

6 Arizona 1.000 1.000 1.000 1.000 1.000 1.000 0.421 0.130 0.477 1.028

7 Washington 0.993 0.994 0.896 1.000 1.000 1.000 0.412 0.131 0.455 0.998

8 California 1.000 1.000 0.958 1.000 1.000 1.000 0.410 0.130 0.451 0.992

9 New Jersey 1.000 1.000 0.800 0.948 1.000 0.982 0.416 0.133 0.456 1.005

10 Iowa 0.895 1.000 0.791 0.938 0.949 0.978 0.410 0.130 0.449 0.990

11 Connecticut 0.999 1.000 0.797 0.945 1.000 0.975 0.424 0.134 0.463 1.020

12 Massachusetts 0.979 0.983 0.779 0.923 0.991 0.950 0.420 0.133 0.461 1.015

13 Maine 0.944 0.950 0.797 0.944 0.983 0.945 0.418 0.132 0.464 1.014

14 Indiana 0.875 0.877 0.785 0.931 0.936 0.943 0.410 0.130 0.451 0.992

15 Delaware 1.000 1.000 0.741 0.878 0.964 0.925 0.437 0.135 0.463 1.034

16 Louisiana 0.896 0.942 0.796 0.943 0.920 0.907 0.411 0.131 0.463 1.004

17 Michigan 0.883 0.905 0.772 0.915 0.908 0.906 0.410 0.131 0.453 0.994

18 Nevada 0.850 1.000 0.733 0.869 0.872 0.897 0.468 0.131 0.548 1.147

19 Oregon 0.866 0.867 0.774 0.918 0.914 0.893 0.413 0.131 0.456 1.000

20 Montana 0.809 0.943 0.782 0.927 0.895 0.875 0.413 0.130 0.459 1.003

21 South Carolina 0.983 1.000 0.766 0.908 0.882 0.872 0.410 0.131 0.464 1.005

22 Minnesota 0.820 0.911 0.729 0.864 0.857 0.871 0.410 0.130 0.451 0.991

23 Kansas 0.807 0.866 0.721 0.854 0.845 0.855 0.410 0.130 0.451 0.991

24 Texas 0.807 1.000 0.709 0.841 0.809 0.833 0.410 0.130 0.450 0.990

25 Idaho 0.792 0.796 0.715 0.848 0.850 0.829 0.413 0.131 0.457 1.000

26 Wisconsin 0.798 0.828 0.691 0.819 0.815 0.824 0.410 0.130 0.451 0.992

27 Ohio 0.783 0.793 0.686 0.814 0.814 0.822 0.410 0.130 0.451 0.992

28 Mississippi 0.949 0.953 0.721 0.855 0.820 0.822 0.410 0.131 0.457 0.997

29 Nebraska 0.780 0.801 0.676 0.802 0.797 0.806 0.410 0.130 0.450 0.991

30 Arkansas 0.756 0.787 0.677 0.802 0.784 0.783 0.410 0.131 0.455 0.995

31 New York 0.755 0.813 0.640 0.759 0.773 0.774 0.411 0.131 0.451 0.992

32 Colorado 0.845 0.851 0.663 0.786 0.784 0.773 0.413 0.130 0.453 0.996

33 Maryland 0.786 0.788 0.624 0.740 0.771 0.746 0.415 0.131 0.458 1.003

34 Pennsylvania 0.741 0.858 0.607 0.719 0.736 0.737 0.411 0.131 0.451 0.992

35 Virginia 0.726 0.729 0.619 0.733 0.733 0.727 0.410 0.131 0.454 0.995

36 Missouri 0.679 0.763 0.605 0.718 0.711 0.724 0.410 0.130 0.450 0.991

37 South Dakota 0.707 0.743 0.626 0.741 0.726 0.722 0.411 0.130 0.453 0.994

38 Georgia 0.685 0.716 0.612 0.725 0.707 0.709 0.410 0.131 0.454 0.995

39 Alabama 0.729 0.732 0.616 0.731 0.706 0.705 0.410 0.131 0.457 0.997

40 Oklahoma 0.669 0.723 0.601 0.712 0.696 0.697 0.410 0.130 0.452 0.993

41 New Mexico 0.664 0.717 0.623 0.738 0.716 0.696 0.416 0.130 0.463 1.009

42 New Hampshire 0.661 0.672 0.556 0.659 0.703 0.674 0.432 0.133 0.472 1.037

43 Tennessee 0.634 0.653 0.565 0.670 0.655 0.656 0.410 0.131 0.454 0.995

44 Kentucky 0.644 0.662 0.559 0.662 0.650 0.654 0.410 0.131 0.453 0.993

45 Vermont 0.584 0.596 0.543 0.644 0.668 0.641 0.420 0.131 0.465 1.017

46 Utah 0.622 0.629 0.540 0.641 0.648 0.626 0.417 0.131 0.459 1.007

47 Wyoming 0.732 0.734 0.527 0.625 0.617 0.596 0.422 0.130 0.464 1.016

48 West Virginia 0.529 0.534 0.470 0.557 0.558 0.543 0.413 0.131 0.462 1.005

Pearson’s 
correlations

1.000 0.943 0.903 0.928 0.945 0.935

1.000 0.870 0.920 0.919 0.932

Source: authors’ computation using data of Ferrell (1957)



448

Original Paper Agric.Econ – Czech, 61, 2015 (10): 441–449

doi: 10.17221/72/2014-AGRICECON

First of all, it needs to be noted that the averaged 

elasticity of scale, 1.010, corresponds perfectly to 

that assumed by Farrell, who used the constant re-

turns to scale Cobb-Douglas function. The averaged 

elasticities of inputs,

ε (labour) = 0.417, ε (land) = 0.132, ε (materials) = 0.461

also correspond to those calculated by Farrell. 

The main advantage of parametric approaches, 

however, is a possibility of establishing the form of 

the frontier production function. The estimated logs 

of this function, obtained in the frames of models 

under considerations, are as follows:

COLS: 

log f (x) = –2.180 + 0.406 log x
1
 + 0.112 log x

2
 + 0.492 log x

3

               (0.581)   (0.040)      (0.025)           (0.045)

                ε (scale) = 1.010 (0.026)     R2 = 0.974

MOLS: 

log f (x) = –2.174 + 0.406 log x
1
 + 0.112 log x

2
 + 0.492 log x

3

                (0.581)     (0.040)      (0.025)        (0.045) 
                ε (scale) = 1.010 (0.026)    R2 = 0.974

DE+RA:

log f (x) = 1.113 + 0.426 log x
1
 + 0.134 log x

2
 + 0.463 log x

3

              (0.477)    (0.056)      (0.031)           (0.052)

              ε (scale) = 1.023 (0.028)   R2 = 0.985

DE+RAs:

log f (z) = –1.842 + 0.409 log z
1
 + 0.130 log z

2
 + 0.449 log z

3

               (0.460)    (0.054)      (0.030)         (0.051)

               ε (scale) = 1.009 (0.006)   R2 = 0.985

where z
1 

= x
1
 – 0.39, z

2 
= x

2
 – 11.87, z

3 
= x

3
 – 859.94.

In the DE+RAs method the translation vector was 

equal to 20% of the vector (1.97, 59.36, 4299.72) 

composed from the minimal values of all the three 

inputs. This time the translation was rather small. 

In consequence, the differences between the coef-

ficients of functions following from the combined 

methods are almost indistinguishable. Moreover, 

they are also very similar to those following from 

the COLS and MOLS approaches. This agreement 

is a consequence of the constant return to scale as-

sumption, which is strongly supported by the data. 

It is confirmed by a very high correlation coeffi-

cient between results obtained from DEA(CRS) and 

DEA(VRS). In consequence, we have also very high 

correlations between efficiencies following from the 

other methods. Nevertheless, technical efficiencies 

produced by the proposed DA+RAs method are most 

similar to those following from the non-parametric 

DEA(VRS). 

CONCLUSIONS

In the paper various techniques of evaluating techni-

cal efficiency are discussed. Among them we consid-

ered the non-parametric approaches related with data 

envelopment analysis (DEA), parametric ones based 

on regression analysis (RA) and using the concept 

of frontier production function, and the combined 

method linking both parametric and non-parametric 

approaches. Unfortunately, different methods, as it 

was observed by some authors, can produce very dif-

ferent estimates of efficiencies, which is unexpected 

when analysing the same data set. Therefore, in the 

presentation of various methods we paid special at-

tention to their differences and weak points in the 

context of technical efficiency estimation. 

In this respect we noted that in the case of stochastic 

frontier functions and deterministic frontier func-

tions there is an important difference in the defini-

tions of technical efficiency. This justifies even large 

differences between estimated efficiencies, since the 

crucial assumptions of these models are different. In 

turn, we have observed that the DEA approach can 

deliver similar estimates as the RA approach with a 

deterministic production function, but only if the basic 

assumptions of the methods applied are consistent 

and simultaneously these assumptions are supported 

by the data under investigation. As a result of this 

discussion we have proposed a shift of the produc-

tion function, which modification may improve the 

estimation process in a case when the assumption of 

constant returns to scale is not valid. The usefulness 

of this modified method is illustrated by analyses of 

two data sets concerning agricultural production.
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