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The operations research (OR) models began to 

be applied for agriculture decision making in the 

early 1950s. At first, the linear programming was 

proposed to establish the least cost combinations of 

feeding and livestock ratios and later to determine 

the optimum crop rotations on a farm (Bjorndal et 

al. 2012). Even though the linear programming has 

been the most common OR technique in agriculture, 

many other approaches have already been applied 

to the agribusiness problems. From the modelling 

perspective, the OR models in agriculture can be 

classified as deterministic and stochastic, according 

to the certainty of the value of the parameters used. 

Where the parameters are assumed to be deterministic, 

apart from the linear programming, also the dynamic 

programming, the mixed integer programming and 

the goal programming are frequently used, otherwise 

the stochastic modelling approaches are employed, 

these including mainly the stochastic programming, 

the stochastic dynamic programming, the simulation 

and risk programming (Maatman et al. 2002; Lowe 

and Preckel 2004; Torkamani 2005; Benjamin et al. 

2009; Bohle et al. 2009). 

Currently, the main stream of operations research 

(OR) focuses on developing sophisticated models for 

the decision making support that reflect the reality as 

precisely as possible. However, these realistic models 

claim complex solution procedures and advanced 

software tools. What is acceptable for the decision 

support of enterprises or policy makers on the na-

tional or international level may appear a barrier for 

the decision support for small enterprises on a local 

level (Boehlje 1999). No doubt that finding optimal 

decisions within the board of small enterprises and 

local problems is as important as finding these for 

the global problems. This is particularly the case 

in agriculture business where the sustainable and 

ecologically sound production of all farms is of the 

substantial global importance (Cramer et al. 2000). 

In this paper, we focus on structuring, solution and 

validation of the typical decision problem of produc-

tion planning on the farm level in the Czech Republic 

in a way that it is: 

(1) covering the complex structure of the problem 

(2) user-friendly and solvable in the EXCEL which is 

commonly available at farms, 

(3) valid, 

(4) possibly transferable for structuring similar pro-

duction planning problems under the specific 

local conditions. 
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Particularly, in this paper we develop a decision 

support tool for the farm crop planning covering both 

the stochastic nature of the harvest parameters and the 

complex crop succession requirements in such a way 

that the resulting mathematical programming model 

can be processed by the EXCEL. Such an approach 

provides the farmers with a user-friendly alternative 

to the estimative crop plan decision making relent-

lessly used. Note that including the crop succession 

requirements into a mathematical programming 

model is a nontrivial task that is permanently in the 

focus of the operations researchers (Seppelt 2000; 

Dogliotti et al. 2003; Klein Haneveld and Stegeman 

2005; Bachinger and Zander 2007; Detlefsen and 

Jensen 2007; Castellazzi et al. 2008; Jatoe et al. 2008; 

Benjamin et al. 2009; Parsons et al. 2009; dos Santos 

et al. 2011). Moreover, the combination of the crop 

succession restrictions and the risk consideration in 

a single optimization model is very rare (Myers et al. 

2008) and leads to a complex optimization problem. 

None of the results of the current research in the 

field of the agriculture production planning is im-

mediately applicable to the problems comprising both 

of the above mentioned features. Hence, the aim of 

the proposed approach is to provide a farmer with 

a user-friendly model yet covering the nonstandard 

complex structure of the real problem. In Materials 

and methods, the production planning problem in 

agriculture is formulated in general, the local specif-

ics of Czech farming are summarized and the model 

structuring, the assumptions and simplifications made 

are discussed in detail. The crop succession constraint 

is designed and its construction is explained using 

a practical example. In Results and discussion, this 

model is applied and solved for a particular problem of 

the South Moravian farm, the validation procedure is 

applied and evaluated and the discussion is provided.

MATERIAL AND METHODS

Let us systematize the general aspects determin-

ing the mathematical programming model for the 

agricultural crop planning problem:

(1) Behaviour of the farmer

– the objective of production process

– risk attitude, sources of uncertainty

(2) Sources of restrictions 

– available land and capital 

– materials and supplies used in farm production 

– environmental factors – soil conservation, water 

quality control, manure management, etc. 

– legal aspects of production -regulations and laws, 

quality control, inspection requirements, etc. 

(3) The form of crop plan 

(1) Behaviour of the farmer 

We consider a representative generic farm in the 

Czech Republic managing a single compact one-

soil type area of land and using its own capital. 

The farmer’s objective is to maximize profit from 

the future harvest for the given area of arable land. 

Note that the profit maximization as a goal of the 

farmer has been doubted by some authors (Bjorndal 

et al. 2012), but in our study, we follow the farmer’s 

attitudes and preferences for the particular real 

situation.

The high level of uncertainty is present in the es-

timation of the parameters of the agriculture pro-

duction planning models (e.g. yield, profit, demand 

for products, weather conditions, etc. (Hazell and 

Norton 1986). The effects of uncertainty are par-

ticularly important if the farmers are risk averse, as 

it has been traditionally assumed in the economic 

literature (Hardaker al. 1991; Benjamin et al. 2009, 

Ahumada and Villalobos 2009), and as it is the case 

also in our problem. In our approach, we will consider 

the random yields which reflect the uncertainty of 

weather and natural conditions. In the real situa-

tion, the demand for the farmer’s products and the 

selling prices are unknown as well at the moment of 

the production planning. We deal with these using 

the farmers’ expert estimation of further prices and 

demand. Hence, we will consider the future prices as 

the given constant and the farmer sets the margins 

for each crop to follow the expected demand.

The objective function representing the profit 

maximization takes the form 

n

i
ii xcz

1

* max   (1)

where the decision variables xi stand for the areas 

of arable land planted with crop i. In the objective 

function (1), the parameters ci are the random vari-

ables of the total profit per 1 ha of the planted crop 

i defined as follows:

ci = piqi – ni   (2)

qi being the random variable yield of the respective 

crop-plant i. We consider ni (total costs per 1 ha of 

arable land planted by crop i) and pi (selling price 

for 1 ton of crop i), 1 ≤ i ≤ n, constants of the known 

values. Note that in the profit function, we assume 

zero fixed costs, which, although unrealistic, is ac-
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ceptable since the fixed costs do not influence the 

performance of the model. 

The formulation (1) seems to represent a simple 

linear function but, as the harvests qi must be seen 

as random variables, the optimization problem is 

of the stochastic nature. Note that, through (2), the 

profits ci are random as well. We assume that, for the 

next period, the prices per ton pi are already given. 

We will employ the Markowitz criterion to obtain a 

deterministic equivalent of the objective function. 

Note that there is a number of approaches to trans-

form a stochastic program into a deterministic one. 

The Markowitz model was one of the first used in 

the agriculture production planning optimization 

under risk (Freund 1956). Markowitz formulated 

the portfolio problem as a choice of the mean and 

variance of the portfolio assets. Later, the alterna-

tive portfolio theories were suggested (Kraus and 

Litzenberger 1976; Lee 1977) and also a number of 

alternative approaches appeared for the agriculture 

optimization under risk (Hardaker et al. 2004; Lien 

et al. 2009). Nevertheless, the mean variance theory 

has remained the cornerstone of the modern port-

folio theory. Its persistence is due to the fact that 

the theory is widely known, well developed and has 

a great intuitive appeal understandable even by the 

professionals who never run an optimizer (Elton and 

Gruber 1997; Rubinstein 2002). Following the Freund 

approach and denoting 

Σ = the covariance matrix of the random vector (c
1
,

   …, c
n
)

x = the decision variables vector 

a = the risk aversion coefficient 

γ = the unit profit means vector, i.e. 

      nn cc ,,,, 11  
 

the Markowitz-type objective function takes the form

z~* TT xxxa
2

min   (3)

where the maximization of the random profit (1) 

is replaced by the minimization of the difference 

between the terms representing the variability and 

the mean value of the total profit. 

(2) Sources of restriction 

We will assume the associated animal production 

generating the requirements on a certain level of 

the feed crops and limiting the manure available. 

No additional restriction will arise due to the need 

of the machinery, equipment, materials, etc., since 

the needs of the production process are consistently 

stable and the arm has a sufficient capacity to cover 

all production plans considered. As for the environ-

mental factors, the manure management will affect the 

decision making in the form of specific needs for each 

crop to manure the field. Moreover, the crop succes-

sion rules must be obeyed to respect the agronomic 

regulations. The legal aspects of production cause 

no further restrictions to our optimization problem. 

All the restrictions mentioned can be represented 

by the simple linear inequality constraints up to the 

more complex crop succession constraints.

Construction of the crop succession constraints 
The crop succession constraints ensure that the 

same crop will not be re-sowed on one piece of land 

during the relevant number of years and that the 

prohibited succession of two different crops will not 

appear. These restrictions can be represented by a 

system of linear inequalities. Denote n the number 

of crop types planted by the particular farm, and x
i
 

the area planted by crop i. Then the constraints are 

generated using the algorithm

for p =1 to n:

for each p-combination {i
1
, …, ip} from a set {1,…, n}: 

pps ii

p

s
iii yxXx ,,

1
,, 11

~~   (4)

where X is the total area of arable land available, 
piix ,,1

~
 

is the total area cropped with all the crops i
1
, …, ip 

during the r(i
1
), …, r(ip) past years, r(is) is the number 

of years after which the crop is may be planted on the 

same area, 
piiy ,,1

~  is the total area not cropped with 

all the crops i
1
, …, ip during the relevant past years, 

but cropped last year with the crop plants after which 

none of the crops i
1
, …, ip may succeed. Note that 

the constraint was mentioned (but not constructed) 

and validated in (Janová 2012), here the thorough 

construction is provided (for more illustration of the 

constraint construction, see Appendix.)

(3) The form of a crop plan 

The results to be obtained from the model solution 

are the total areas of land cropped by the particular 

crop plants. Hence, we do not assign the crops to the 

particular fields. This is to simplify the optimization 

model and to provide the farmer with a valid and 

practical support for making the final production 

planning decisions.

A number of real aspects of the decision problem 

have not been directly reflected in our model (e.g. the 

impact of subsidies and the international environment 
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or the unknown future prices). The practice of the 

model design has shown that the more accurate the 

model, the more complex form of the model (and the 

more sophisticated solution techniques) is needed. 

The aim of the model suggested in our contribution 

is to be as simple as possible while having a high 

information value. 

To attain this objective we employ the specific 

farmer’s information on the parameters (financial and 

technical) that enters his/her real decision making and 

in this way, we suppose to cope with the part of the 

issues not directly reflected by the model. Particularly, 

the existence of subsidies can be incorporated by the 

farmer in the unit costs and/or unit prices, and the 

randomness of the future prices can be covered by 

the expert judgement of the farmer. 

These assumptions must be justified by the valida-

tion that for our model has been done through the 

Monte Carlo simulations. The validation itself is 

described and its results are discussed at the end of 

the section Results and Discussion. Note that even 

though the results of the validation are satisfactory, 

we do not state our model to provide a final crop 

plan but recommend it to be used as an additional 

supporting source of information when making the 

final decision concerning the crop plan.

The Monte Carlo simulations

In our validation experiments we will use the Monte 

Carlo simulations as an experimental device that 

provides information on the model performance. 

Here we briefly summarize the basis of the method.

In the simulation, the optimal values of decision 

variables (crop areas) are the inputs and the simula-

tion experiment evaluates the objective function 

for particular set of values of the random variables. 

Particularly, in our problem we

(1) generate the random numbers from the interval 

[0,1] 

(2) assume that each random number is a value of the 

cumulative distribution function of the natural 

yield for one crop

(3) find the particular yield for each crop using the 

inverse of the cumulative distribution function 

(4) given the yields of the crops, we enumerate the 

profit of the optimal crop plan 

(5) repeat the simulation. 

By this procedure, we obtain a number of the har-

vests’ scenarios, each of them evaluated by the par-

ticular total profit. During the validation, we use these 

data to evaluate the total profit performance of the 

model in comparison to the real decision of the farmer. 

RESULTS AND DISCUSSION

As a result of the above described construction, 

we can write down a mathematical program for the 

particular farm. In our case study, we consider a one 

year ahead planning in the South Moravian agriculture 

cooperative farming on the area of 1265 ha. The crop 

plan decision making is restricted by 

– total area of arable land available (X), 

– capital (N), 

– maximal area fertilized by manure (M), 

– restrictions on the minimal resp. maximal area 

cropped by the particular crop (Ai resp. Bi, 1 ≤ i ≤ n, 

C, D), 

– re-sowing of the crops. 

The total costs ni of planting the crop i consists of 

the costs of seeds, labour and machine time used for 

planting the particular crop. The constraints on the 

maximal area fertilized by manure and the thresholds 

for the areas cropped by the particular crops follow 

from the livestock breeding potential and the needs 

of the particular farm. Moreover, the threshold re-

strictions reflect also the expected demand for the 

products of the particular farm. 

The data were gathered in (Janová and Ambrožová 

2009), where a deterministic linear programming 

problem without crop rotation restrictions was solved. 

The decision variables xi are the areas planted by the 

particular crops (Table 1). Due to different prices of 

the food and feed crops, each area sowed by one ag-

ricultural crop was split into two decision variables. 

Nevertheless, the harvest characteristics are for both 

food and feed type of the crop the same. The quadratic 

Table 1.  Decision variables

xi area sowed by x
8

spring feed barley

x
1

winter food wheat x
9

triticale

x
2

winter feed wheat x
10

corn

x
3

spring food wheat x
11

corn silage

x
4

spring feed wheat x
12

oilseed rape

x
5

winter food barley x
13

potatoes

x
6

winter feed barley x
14

grass

x
7

spring food barley x
15

grass seed
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programming model discussed above takes, for the 

particular case of a South Moravian farm, the form 

z~* TT xxxa
2

min    (5)

Nxn
n

i
ii

1

   (6)

Mxm
n

i
ii

1

   (7)

xi ≥ Ai (8)

xi ≤ Bi (9)

x
5  + x

5
 ≤ C (10)

x
6  + x

7
 ≤ D (11)

for each p-combination {i
1
, …, ip}from a set {1, …, n}: 

p

s
isx

1
pp iiii yxX ,,,, 11

~~   (12)

xi ≥ 0, 1 ≤ i ≤ n (1 3)

The restrictions on the total capital available are 

contained in (6), where ni are the unit costs and N 

denotes the budget, the constraint (7) reflects the 

restriction on the total manure. Note that mi is the 

manure coefficient that plays the role of the ratio of 

the arable land (to be cropped by the crop i) that will 

be fertilized by manure. This coefficient reflects the 

intended procedure at the farm. The conditions (8)–

(11) ensure the maximal and minimal areas cropped by 

the particular crops and (12) are the crop succession 

constraints developed in the above. The parameters of 

the constraints and the objective function are listed in 

Table 2 and Table 3. Note that the elaborated model is 

a simplification of the one mentioned in (Janová 2012).

Identifying the minimum number of years after 

which each crop can be re-sowed on the same area 

and the prohibited succession of crops, the set of the 

succession constraints (12) is generated: 

979
9

1k
kx        x

12
 ≤ 131 (1 4)

1125
9

1
12

k
kxx  

Note that, for the purpose of generating the con-

straint, crops 1–9 were clustered together as cereals. 

The model was solved for the circumstances of the 

year 20091 and for several values of the risk aversion 

coefficient a covering the low aversion to risk with 

a = 0 up to high risk aversion attitude of the decision 

Table  2. The parameters of the problem (rounded): 

γi = the unit profit mean, ni = the total costs per 1 ha, 

pi = selling price for 1 ton, μi = yield mean, mi = the 

manure coefficient

i γi 
(CZK/ha)

ni 
(CZK/ha)

pi 

(CZK/t)

μi 
(t/ha)

mi

1 2 590.0 20 524 3 900 5.93 0

2 1 373.3 17 592 3 200 5.93 0

3 1 764.5 15 428 3 900 4.41 0

4 882.7 13 224 3 200 4.41 0

5 5 513.9 16 088 5 300 4.08 0

6 1 384.3 12 066 3 300 4.08 0

7 5 570.5 17 776 5 300 4.41 0.2

8 1 204.5 13 332 3 300 4.41 0.2

9 433.7 15 457 3 200 4.97 0

10 1 856.0 33 408 4 800 6.19 0.67

11 1 726.5 15 906 600 29.39 0.67

12 3 185.3 24 256 8 800 3.12 0.2

13 1 397.1 64 589 2 740 24.08 1

14 –561.5 12 933 485 25.51 0

15 3 041.3 8 420 26 500 0.43 0

Table  3. Thresholds for the areas sowed by the par-

ticular crops

i xi/area Ai (ha) Bi [ha] C (ha) D (ha)

2 x
2

69 –

4 x
4

17 –

6 x
6

20 –

8 x
8

76 –

9 x
9

– 40

10 x
10

20 –

12 x
12

– 240

13 x
13

– 30

14 x
14

60 100

15 x
15

– 85

– x
5
 + x

6
22

– x
7
 + x

8
330

1This choice follows from the data availability.
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maker with a = 1×10–6. The quadratic programming 

problem (5–13) can be solved using any available 

optimization software including the Solver in MS 

Excel. The standard Excel Solver has a limit of 200 

decision variables or changing cells. It also imposes 

a limit on the number of constraints in a situation 

where the problem is nonlinear (there is a limit of 

100 constraints other than the constant bounds on 

the variables and integer constraints). Since in our 

quadratic programming problem there are 15 deci-

sion variables and about 50 constraints including 

the constant bounds, the Solver appears to be an 

appropriate software tool for finding the solution. 

Note that the covariance matrix and the mean values 

as the right hand sides of the re-sowing constraints 

(12) can easily be enumerated with the use of the 

Excel. The user must be aware of the fact that all 

the crop history on each field must be entered into 

the spreadsheet table. In case there is no electronic 

version of the crop history at the farm, it may appear 

more simple to determine the left hand sides of the 

re-sowing constraints by hand.

The results of the optimization model for all choices 

of the parameter a can be compared to the real deci-

sion of the farmer in Table 4. The differences between 

the model results and the real decision for higher 

risk aversion (a × 106 = 0.5–1.0) are not significant 

except the area cropped by the oilseed rape and 

the winter food wheat. In the model results, the oil 

seed rape area 131 ha is on the upper bound of the 

succession constraint (14) while in the real plan, 

the oil seed rape area is 230 ha. Hence, for the year 

2009, the farmer decided to produce oil seeds on a 

higher area than it is theoretically recommended. 

The model solution replaces the area of the oil seed 

rape especially by the winter food wheat. Note that 

the area of the winter food wheat is increasing in the 

model solution for a lower risk aversion coefficient, 

which reflects the high profits of the crop together 

with its high variability in harvests.

To evaluate the model performance, we will compare 

the expected profit for the optimal plans obtained 

by the model with the farmer’s decision using the 

Monte Carlo simulations (the particular validation 

procedure was suggested in Janová 2012). For the 

purpose of the harvests simulation, the natural yields 

(qi) were described using the Beta distribution and 

the correlation between the crop yields was consid-

ered using the Spearman rank correlation. Using the 

harvests simulation, the profit characteristics (the 

95% confidence interval for mean and standard devia-

tion) were enumerated (the calculations were done 

in the MATLAB). The results can be seen in Figure 1 

where, for the optimal sowing plan suggested by the 

model and for the real decision of the farmer, the 

particular confidence intervals are visualized for the 

Table  4. The optimization results for different settings of the risk aversion parameter 

a × 106 0–0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Decision made 

(ha)

x
1

winter food wheat 531 511 416 369 340 314 288 251 231 216 188

x
2

winter feed wheat 69 69 69 69 69 69 69 69 69 69 78

x
3

spring food wheat 0 0 0 0 0 10 11 8 0 0 0

x
4

spring feed wheat 17 17 17 17 17 17 17 17 34 46 14

x
5

winter food barley 2 2 2 2 2 2 2 2 2 2 0

x
6

winter feed barley 20 20 20 20 20 20 20 20 20 20 17

x
7

spring food barley 254 254 254 254 254 254 254 254 254 254 260

x
8

spring feed barley 76 76 76 76 76 76 76 76 76 76 74

x
9

triticale 0 0 0 0 0 0 0 34 40 40 0

x
10

corn 20 20 20 20 20 20 20 20 20 20 29

x
11

corn silage 0 20 115 162 190 206 194 196 199 202 230

x
12

oilseed rape 131 131 131 131 131 131 131 131 131 131 231

x
13

potatoes 0 0 0 0 0 0 0 1 3 4 0

x
14

grass 60 60 60 60 60 60 98 100 100 100 79

x
15

grass seed 85 85 85 85 85 85 85 85 85 85 64



129

Agric. Econ. – Czech, 60, 2014 (3): 123–132 Original Paper

different risk aversion coefficients. We can see that, 

depending on the decision maker’s risk attitude, the 

profit mean and the standard deviation confidence 

intervals resulting from the modelled optimal crop 

plan can be above or below those based on the real 

decision. There are the important conclusions fol-

lowing from the Figure 1. 

(1) The model reflects the risk as expected: the higher 

the aversion to risk, the lower is the profit mean 

but also the lower is the profit variance. 

(2) The profit mean performance of the model op-

timal solution is comparable to that obtained 

by the real crop plan while the profit variability 

performance is much better for the model solu-

tion (as it can be demonstrated e.g. for a × 106= 

0.6 in Figure 1, where the real decision and the 

model solution have almost the same mean profit 

interval, while the standard deviation interval is 

considerably higher for the real decision). This 

means that the model considering the randomness 

of the harvests provides a solution generating the 

profit that is comparable to the one obtained so 

far, but with a lower risk. 

The model solution provides the farmer with im-

portant information on the theoretical crop plan that

– satisfies all the theoretical crop rotation rules, 

– expects the comparable profits to those obtained 

so far,

– suggests the combination of the crops areas that 

as a whole show low variability in the final profit.

In this way, the model may be used as a decision 

support tool when designing the crop plan. Although 

the farmer can occasionally decide not to follow the 

crop rotation rules (which is unfeasible for the model), 

the model solution can be used as a help when decid-

ing on the rest of the arable area. Indeed, the model 

solution aims to reach a high expected profit while 

keeping its variability low. Hence, adapting the model 

solution for the real crop plan design may improve 

the results of the farming by lowering the risk of the 

decision making.

Note that in (Ambrožová 2013) the validation 

was provided for three mathematical programming 

models optimizing the crop plan at Czech farms. The 

model appearing in (Janová 2012) and elaborated in 

detail in this article together with the models based 

on (Santos et al. 2010) and (Klein Haneveld and 

Stegeman 2005) were adapted to find the theoretical 

optimal crop plans for the years 2005–2011 at two 

particular Czech farms. The results of the validation 

calculation together with the farmers‘ expert opinion 

have shown that the model presented in this paper 

is valid in the sense of representing sufficiently the 

real decision making process at Czech farms and that 

its profit performance is very good. In conclusion, 

(concerning both the validation calculation and the 

expert opinion) the model was appointed as a helpful 

information source for the crop plan design at farms.

CONCLUSION

In the crop plan model presented, the harvests’ 

randomness is considered and in addition to the 

common agribusiness restrictions, also the crop suc-

cession requirements are incorporated via the linear 

constraints. The results obtained from the model for a 

Figure 1. The confidence intervals for the 

profit mean and the standard deviation ac-

cording to the decider’s risk attitude
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representative Czech Republic farm provide the areas 

of arable land cropped by the particular crop plants. 

These areas fulfil the fundamental crop rotation rules 

while performing the expected profit at a sufficiently 

high level as shown by the Monte Carlo simulation. 

The model does not determine the “pattern” of the 

land, hence the farmer himself/herself has to decide 

where the crops will be planted (it is, however, guar-

anteed by the model that such a configuration exists). 

The farmer can use the results of the model as a true 

decision supporting information enabling him/her to 

correct or improve the up-coming crop plan in a way 

that all relevant restrictions are satisfied and a good 

level of profit can be expected. The possibility of ap-

plying the model in the farmer’s practice is increased 

by the fact that the final model is solvable using an 

Excel spreadsheet which is commonly available at 

any farm. The results of this paper can be applied 

either directly for similar conditions in the form of 

the suggested crop plan model or, for different local 

conditions, applying the suggested model structur-

ing supported by the recently developed validation 

approach may provide the decision maker with the 

desired valid user friendly decision support. 

Appendix

Let us perform the construction of the succes-

sion constraint using a small-scale example. Let us 

have only four types of crops (i.e. n = 4). The crop 

1 may be re-sowed after 2 years (i.e. r(1) = 2) on the 

same piece of land, while the crop 2 after 1 year (i.e. 

r(2) = 1) and both of them must not directly succeed 

the crop 3. Other two crop types may be re-sowed 

without restrictions (i.e. r(3) = r(4) = 0). Let us have 

4 fields (A, B, C, D), each of them of 1 ha area and 

suppose there is known a 2 years history of the crop 

design for each field (Table 5). 

For p = 1, we get the first set of conditions: 

111

~~
iii yxXx   (1 5)

where on the left-hand side, there is the total area of 

land sowed by the crop i
1
, and on the right-hand side, 

there is the total area of the arable land available less 

the area, where the crop i
1
 was sowed during past 

r(i
1
) years, and less the area not already covered by 

1

~
ix , where the crop prohibited in preceding the crop 

i
1
 was sowed last year. Hence, taking into account 

that i
1
 gradually takes all the combinations of the 

indexes 1, 2, 3, 4, the condition (1) represents four 

constraints, each of them for one of the crops planted 

in the farm. These constraints can be written down 

enumerating the values of the prohibited areas 
1

~
ix , 

1

~
iy  from the crop history (Table 6). The constraints 1 

take the form: 

x
1
 ≤ 2, x

2
 ≤ 1, x

3
 ≤ 4, x

4
 ≤ 4 (16)

If no other constraints entered the problem, the 

solution x
1
 = 2, x

2
 = 1 is feasible. However, sowing 

the crop 1 on the fields B and C, there is no feasible 

field for planting the crop 2. Therefore, another set 

of constraints must emerge in the problem.

Indeed, for p = 2, restriction (4) leads to 

212121

~~
iiiiii yxXxx   (17)

On the left-hand side, there is the total area of the 

arable land sowed by the crop i
1
 or crop i

2
. On the 

right-hand side, there is the total area available less 

the area where both of the crops occurred during 

the past relevant numbers of years and less the area 

not included in
21

~
iix , where the crops prohibited in 

preceding both the crops i
1
 and i

2
 were sowed last 

year. In relation (17), coefficients i
1
 i

2
 range over all 

the combinations of size 2 from the set {1, 2, …, n}. 

Hence, (17) forms a set of conditions for all pairs of 

crops planted: 

x
1
 + x

2
 ≤ 2 (18)

x
1
 + x

3
 ≤ 4 (19)

The total area cropped by the plants 1 and 2 is 

decreased in (18) by 1 ha, where both plants were 

cropped during the relevant number of years, and by 

another 1 ha on which the plant 3 was planted last 

year. The other constraints arising for p = 2 and all 

for p = 3 need not be written, because the crops 3 

and 4 need not meet any succession requirements and 

all of the possibly arising constraints are included in 

(20) as obtained for p = 4: 

Table  6. The values of 
1

~
ix ,

1

~
iy  for the particular crops

Crop 1 2 3 4

1

~
ix   (ha) 1 2 0 0

1

~
iy   (ha) 1 1 0 0

Table  5. Crop design history

Field A B C D

2 years ago 1 2 4 2

1 year ago 2 4 2 3
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x
1
 + x

2
 + x

3
 + x

4
 ≤ 4 (20)

In this way, the case of sowing more than one crop at 

the same time in the same area is prevented. Although 

it seems that there will be a large number of condi-

tions in the model and handling the model will be 

complicated, thanks to the low real number of both 

the crops planted on farms and the number of years 

during which the crops cannot be re-sowed in the same 

area, the volume of the model remains reasonable.
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