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Neural networks provide powerful models for the 
statistical data analysis. Their most prominent feature 
is their ability to learn the dependencies based on 
a finite number of observations. After learning, the 
knowledge acquired from the learning samples can 
be generalized to the yet unseen observations. In the 
last two decades, the neural networks have been suc-
cessfully used in many applications in various fields 
of science and technology. Problems solved have 
been mostly the classification or regression problems. 
Many problems in the field of economics can also be 
regarded in the terms of classification or regression 
and neural networks can provide effective means for 
their solution (Herbrich 1999; McNelis 2005).

The majority of papers that use neural networks for 
the classification tasks in economic applications can 
be found in the area of the bankruptcy prediction of 
economic agents. The approach is to use the agents’ 

financial and asset characteristics as an input into 
the neural network in order to obtain the estimate of 
the probability of bankruptcy on the output. Neural 
network based methods often outperform the tradi-
tional classification methods (Atia 2001; Fernandez 
and Olmeda 2006).

Probably the largest amount of economic applica-
tions of the neural networks can be found in the field of 
the prediction of time series. The usual linear models 
used in statistics perform poorly in the nonlinear cases. 
However, neural networks are able to approximate 
any continuous function and therefore they can be 
expected to provide effective nonlinear models for 
different time series and thus allow for better predic-
tions. Many authors tried with success to predict the 
currency exchange rates, as Verkooijen (1996), who 
linked them to the fundamental variables like GDP 
and the trade balance, or Emam and Min (2009) and 
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many others. Neural networks were also used for the 
inflation forecasting. For example Nakamura (2005) 
evaluated the usefulness of neural networks in an 
inflation forecasting experiment using the recent U.S 
data. In his experiment, the neural networks outper-
formed the autoregressive models. McNelis (2005) 
studied the forecasting of inflation and deflation on 
the data from Hong Kong and Japan. 

Neural network models are part of the statistical 
packages, which are on the market today, such as 
the Statistica, the SPSS or the SAS. All these pack-
ages have a user-friendly interface and can be easily 
used in a similar way as the standard statistical or 
data mining methods are. The input data can be in 
a standard table processor format, for example in 
an Excel table, and can be easily imported into the 
used software. Users may utilize their own data or 
may find data on the Internet. Thus they can easily 
make use of these sophisticated methods to improve 
their manager decisions. 

However, using these methods effectively and 
interpreting properly the results means to know 
the underlying fundamental principles, which they 
are based on. Of course, one may choose a certain 
method in an haphazard manner and accept those 
default values of its parameters, which the software 
supplies. Acting this way means to get worse results 
or sometimes even misleading results leading to the 
totally wrong conclusions or predictions. The objec-
tive of this paper is to present the basic principles 
the neural networks methods are based on paying 
special attention to the features that one must know 
to choose an appropriate neural model architecture 
and proper values of its parameters. 

METHODOLOGY AND METHODS

Artificial neuron

For building up neural networks, a simple model of 
physiological neurons called simply neuron is used. 
The neuron is a simple information-processing unit. 
It takes a vector of the real-valued inputs, calculates 
a linear combination of these inputs, adds a constant 
value called bias or threshold and then applies on the 
resulting sum an output (activation) function. More 
precisely, given the inputs x1, ..., xn, the output y is 
computed according to the formula
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where each wi is a real-valued constant called weight 
that determines the contribution of the input xi to the 

neuron output y, b is the bias (threshold) and ϕ(⋅) is 
the output function. The computation of the neuron 
is illustrated in Figure 1.

To simplify the notation, we imagine an additional 
constant input x0=1 with weight w0=b and we write 
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The mostly used output functions are the threshold 
function σ(x) 
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the sigmoid function f(x)
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the logistic function, which is the sigmoid function (4) 
with k = 1 or the identity function ϕ(x) = x. Neuron 
with the identity output function is usually called 
the linear neuron.

Multilayer feedforward networks

Multilayer feedforward networks form an important 
class of neural networks (see for example Haykin 
1999). The network consists of a set of sensory units 
(receptors) that constitute the input layer, one or 
more hidden layers of the computation nodes and an 
output layer that consists also of computation nodes. 
Computing units in the hidden and output layers are 
the logistic or sigmoid neurons. In the output layer, 
also linear neurons might be used. Only neurons of 
the neighbor layers are connected and the input signal 
propagates through the network only in the forward 
direction. The strength of the connection going from 
i-th neuron of the certain layer to the j‑th neuron of 
the next layer is denoted wji. When we use the term 
L-layer network, we refer to a network with L layers 
of computing units. Thus we shall call a network with 
one hidden layer a two-layer network, a network with 
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Figure 1. Formal model of a physiological neuron
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two hidden layers a three-layer network and so on. A 
layer network with n inputs and m outputs represents 
m functions with n arguments. These functions can 
be easily expressed explicitly. For example, a two-layer 
network (see Figure 2) with n receptors, one output 
and m hidden units represents the function
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Here Wj is the weight of the connection between 
j-th neuron at the hidden layer and the output neuron 
and wji is the weight of the connection between the 
i-th input neuron and the j-th neuron at the hidden 
layer. All neurons in the hidden layer have the same 
output function ψ(⋅) and the output neuron has the 
output function ϕ(⋅). 

Neural network learning

Multilayer feedforward networks can be used for 
solving different classification or regression problems. 
The behavior of a neural network is determined by the 
set of its weights. Therefore, the crucial problem is 
how to determine the weights in the given problem to 
get the neural network with the desired behavior.

The neural network approach involves the parameter 
learning from examples. Neural network learning 
or training means to have an adaptive procedure in 
which the weights of the network are incrementally 
modified. The learning process consists in updating 
the weights, so that an error function dependent on 
the network output and the known target value is 
reduced. Algorithms used for the learning purposes 

are based on the following methods of adaptation: 
gradient learning, simulated annealing and genetic 
evolution.

Gradient learning

Gradient learning is based on a traditional math-
ematical method of searching the local minimum 
of a function. Assume that all weights of the neural 
network are ordered and constitute a vector w. The 
gradient algorithm can be formulated as follows: 
Algorithm of the gradient descent search:
1. At the beginning, the weights are set equal to small 
random values.
2. At the n-th step, the value of gradient gradE(wn−1) 
is estimated. For the estimation, one or more elements 
of the learning set are used. Then the weight vector 
wn−1 is modified according to

wn = wn−1 − ε gradE(wn−1 ) + µ ∆wn−1− γ wn−1	 (6)

where ε > 0 determines the rate of the weight vec-
tor change, ∆wn−1 = wn−1− wn−2 is the weight vector 
change in the previous n − 1-th step of the algorithm, 
0 ≤ µ ≤ 1 is a constant called the momentum and γ > 0 
is a regularization (weight decay) constant.

If search algorithm starts with small weights, the 
output function of the network represents in the 
weight space roughly the linear surface. The reason 
is that the neuron output functions are either linear 
or sigmoid functions, and that the sigmoid functions 
are near zero approximately linear. Subtraction of 
γwn−1 helps to keep the weights small which means 
to have a smoother error surface and this helps the 
algorithm to escape the local minima. 

The use of momentum in the algorithm represents 
a minor modification of the classical gradient descent 
algorithm, yet it may improve the learning behavior of 
the algorithm. It has the effect of gradually increas-
ing the step size of the search in regions where the 
gradient is unchanging and thus to accelerate the 
learning process. It also helps to prevent the learn-
ing process from terminating in some shallow local 
minimum of the error surface. 

The gradient gradE(w) is usually calculated on the 
learning set by the means of the algorithm named back 
propagation of error. Sometimes also the matrix H, 
known as the Hesian matrix, is on the learning set 
evaluated. Knowing H makes it possible to estimate 
the optimal size of the weights change and thus to 
accelerate the process of learning. Therefore, the 
algorithms known as the Quasi-Newton algorithm, 
the conjugate gradients algorithm and the Levenberg-
Marquart algorithm, which all make the use of the 
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matrix H estimate, are quicker than the standard 
back propagation algorithm.

Simulating annealing

The method is based on the analogy between anneal-
ing of solids and solving optimalization. It is a modi-
fied Monte Carlo method based on the Metropolis 
algorithm. In the n-th step of the algorithm, the 
weight vector w of the neural network is modified 
by a small randomly generated step. If the new error 
value is smaller than the old one, the step is accepted. 
Otherwise, the new value of weight vector is accepted 
only with the probability 
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Here ∆E is the difference between the new and old 
value of the error function and T is parameter called 
temperature. Temperature controls the probability of 
accepting a step in the wrong direction and during 
learning process, it is continuously decreasing. 

Genetic evolution (Genetic algorithm)

This method starts with a population of neural 
networks represented by its weight vectors. All weight 
vectors are unequivocally encoded into a string of real 
numbers called genome or chromosome. The ability of 
a neural network, represented by its genome, to solve 
the underlying regression or classification problem is 
measured with the fitness function, which might be, 
for example, a negatively taken error function. From 
the current population, there are selected couples for 
“breeding”. The greater value of the fitness function 
means the greater probability of being chosen into 
the parents’ couple. Each parent couple breeds two 
children that come into being by the means of the 
procedure called crossover. During the crossover, 
parts of parents’ genomes are shuffled. The incurred 
children are then put into the new generation. After 
the new generation is created, its genomes undergo 
a small probability process called mutation. In the 
mutation process, one randomly chosen gene of the 
genome is taken and its value randomly changed. 
As new generations come into being, their ability to 
solve the underlying problem ameliorate. 

Error functions

The neural network performance criterion is based 
on the error function E(w) evaluated on the training 

set. The mostly used error functions are the sum-
of-square error function for regression tasks and 
the cross-entropy error function for classification 
tasks.

In a regression problem, the neural network should 
learn s n-argument functions 

fα(x1, …, xn) = fα(x),    α = 1, …, s  	 (7)

and the training set T consists of N samples

T = {(xi, ti), i = 1, …, N },  xi = (x1
i, …, xn

i),  
       ti = (t1

i, …, ts
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The commonly used error function is the sum-of-
square error function 
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where w is the vector of the neural network weights 
and yα

i is the output of the α-th output neuron if the 
sample vector xi is on its input.

In a classification problem, the input vectors are 
classified into s classes Cα. The classes are coded us-
ing the so-called 1-of-s coding scheme. According 
to this scheme, the membership of input x is coded 
by the binary vector t of length s. Each element tα 
of t takes the value 1 if the input vector belongs to 
the class Cα, and it takes value 0 otherwise. The ob-
vious advantage of this coding scheme is that the 
conditional expectation values of variables tα equal 
to the conditional probabilities of classes. For two 
mutually exclusive classes C+

 and C−, a more simple 
way of coding can be adopted. Instead of the vector 
t, a single scalar target variable t is used, the value 
of which is 1 if the vector x belongs to the class C+ 
and 0 if it belongs to the class C−. 

In the role of the error function, we can use the 
above described sum‑of‑square error function or the 
so- called cross-entropy error function 
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From the detailed statistical analysis by the maxi-
mum likelihood method, it follows that using the 
cross-entropy function is more appropriate in clas-
sification problems (Bishop 1996).  

Preparing data 

At the beginning, the data must be attentively scru-
tinized and the input vectors with missing component 
values must be either discarded or the missing values 
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must be substituted with their probable values. For this 
purpose, some standard statistical method can be used. 
For the non-categorical data, the simplest substitution 
utilizes the average value of the missing component, 
computed over the whole data set. For categorical data, 
we may estimate the probabilities of the particular 
values and substitute the missing values according to 
this probability distribution estimate. A more elaborate 
approach is to express the variable with missing values 
in terms of other variables and then to fill the missing 
values according to the regression function. 

After getting rid of the missing values, the data 
should be normalized. If we suspect the data to be very 
redundant, we ought to consider their transformation 
into a feature space with a reduced dimension. 

The data should be randomly separated into train-
ing, validation and test sets. During the training 
period, the training and validation sets are used. 
Vectors from the training set are used for comput-
ing the weight vector change, and the vectors from 
the validation set are used for checking the network 
performance on new, yet unseen data. Usually if a 
network is trained, its error on the training set is 
decreasing. However, from certain moment, the 
network starts to behave badly, if the previously 
unseen vectors are put on its input. This phenom-
enon is called overfitting. To prevent overfitting, the 
training process is stopped as soon as the phenom-
enon of overfitting is observed on the validation set. 
Eventually, the final error of the trained network is 
estimated on the test set. Of course, a greater training 
set leads to better trained networks. On the other 
hand, smaller validation and testing sets mean that 
the gained results will be less reliable. Therefore, 
certain compromise must be adopted. If we have too 
little data at our disposal, we should think of the use 
of the cross-validation technique known from the 
mathematical statistics.

RESULTS AND DISCUSSION

Classification

The majority of applications that use the neural 
network for the classification tasks in economics can 
be found in the area of the bankruptcy prediction of 
economics agents. Bankruptcy prediction has long 
been an important and widely studied topic. Banks 
need to predict the probability of bankruptcy of a po-
tential client, whether it is a company or a consumer, 
since the accuracy of this prediction has significant 
impact on their lending decisions and consequently 
on their profitability. 

The trickiest problem in the classification is to 
choose the proper neural network architecture. As 
mentioned above, the theoretical analysis recommends 
using 1-of-s coding scheme for the class member-
ship coding and using the cross-entropy function 
as the error function. Then the minimization of the 
cross-entropy function provides a network that ap-
proximates the conditional probabilities of classes 
p(Cα|x). As the network outputs are interpreted as 
probabilities, the logistic neurons, which have their 
output values from interval <0, 1>, are commonly 
used in the output layer. If s > 2 and the classes are 
mutually exclusive, then all network outputs should 
sum to 1. To fulfill this requirement, the so-called 
softmax neurons are usually used in the network 
output layer (see Figure 3). Softmax neurons have 
output functions 
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which obviously sum to 1. If s = 2 and input vectors 
are classified into two mutually excluded classes, 
the class membership may be coded with the scalar 
variable and the neural network may have only one 
output logistic neuron.

The numbers of neurons in the input and output 
layer are given by the nature of the solved classification 
problem. However, it is difficult to estimate the size 
of the hidden layer. Thus the number of neurons in 
the hidden layer results from experiments. Neurons 
in hidden layer cannot be linear, because in this case 
the behavior of the network would degenerate to that 
of one layer network. Therefore, logistic neurons are 
usually chosen for the hidden layer. 
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Training

During training, the input vectors are taken from the 
training set and the neural network weight vector is 
adopted in a stepwise manner according to the before 
chosen learning algorithm. Till the network architec-
ture is definitively settled, some of the fast learning 
algorithms that are based on the Hessian matrix are 
used (e.g. conjugate gradients algorithm). Eventually, 
the classical backpropagation algorithm with the mo-
mentum and weight decay parameters is used. We can 
start learning experiments with the default values of 
the momentum and the weight decay and then we may 
try to improve the acquired results by the gradual little 
change of their value. The overfitting is usually avoided 
automatically, due to the used software package that is 
continuously testing the neural network generalization 
efficiency on the validation set. 

Classification error 

Very often the input vectors are classified into 
two disjunctive categories C+ and C−. Then besides 
the overall error e, the quality of classification also 
depends on two parameters named sensitivity and 
false alarm. The network classifies the input vectors 
with sensitivity s if s × 100% of the input vectors from 
category C+ are correctly determined as being from 
the category C+. The network classifies the input 
vectors with the false alarm f, if f × 100% of inputs 
from category C− are incorrectly determined as being 
from the category C+. The functional dependence of 
sensitivity on the false alarm is the so-called ROC 
curve (see Figure 4). The overall error e depends on 
the sensitivity s and the false alarm f 

  fse )1( 	  (12)

where π+ and π− are incidences of the categories C+ and 
C−. Clearly, in applications as the bankruptcy prediction 
having a network with big sensitivity s is important. 

However, according to the ROC curve, the increase of 
the sensitivity s is followed by the increase of the false 
alarm f and usually also with the increase of the overall 
error e. So some compromise must be adopted.

The values of e, s, and f are eventually estimated on 
the testing set. How good these estimates are can be 
answered using the standard statistical technique of 
confidence intervals (see for example Michell 1997). 
Assume N be the size of the testing set. Then the 
confidence interval of e is 

N
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where zc is the constant that defines the width of the 
smallest interval about the mean that includes 100c% 
of the total probability mass under the bell-shaped 
Normal distribution (e.g. for c = 0.95 the value is 
zc = 1.96). The confidence intervals for s and f can 
be calculated in the same way.

Time series prediction

Probably the largest amount of economic applica-
tions of neural networks can be found in the field 
of prediction of time series. Neural network models 
were successfully used for the inflation‑deflation 
forecasting, for the currency exchange rates predic-
tion or for the prediction of share prices. They often 
outperformed the standard statistical methods com-
monly used for time series prediction. However, the 
time series prediction using neural network is far 
from straightforward.

Assume that the value y(t) at time t be predicted 
using the knowledge of its m previous values y(t – 1), 
 ..., y(t – m) and the knowledge of m + 1 values of some 
parameter x(t), x(t – 1), …, x(t – m). The method the 
neural network uses for predicting the values of the 
variable y in time instants t, t + 1, t + 2, …  can be 
described as follows. 
1. Values x(t), x(t – 1), …, x(t – m) of x are put into 
some shift register X and values y (t – 1), …, y(t – m) 
are put into another shift register Y. Registers X and Y 
are connected to the receptors of the neural network 
(see Figure 5). The neural network computes z(t), 
which is considered to be a prediction of y(t). 
2. In the next instant, the values in the registers X 
and Y are shifted one place to the right. Into the 
first position of register X, the new value of x is put. 
Into the first position of the register Y, the value of 
y, which was in the preceding time instant predicted 
and which meanwhile materialized, is put. The output 
of the neural network determines the new value of y 
predicted for the current instant. 
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3. To obtain predictions of y for the further time 
instants, the step 2 is repeated.

However, before the network is used for predic-
tion, it must be trained on the training set in order 
that its predictions could be reasonable. Assume the 
training set 

y(N), …, y(1),  x(N), …, x(1) , N >> m 

Then the training procedure can be described as 
follows.

1. The first m + 1 values x(m + 1), x(m), …, x(1) of 
variable x are put into the shift register X and the 
first m values y(m), …, y(1) of variable y are put into 
the shift register Y.

2. The output of the network is considered to be a 
prediction of y. The predicted value of y is compared 
with the true value of y in the training set and the 
error of prediction is evaluated. Then according to 
the before chosen learning algorithm, the weight 
vector of the network is modified.

3. The values in the registers X and Y are shifted 
one position to the right and into the first positions 
of the registers X and Y, the next values of x and y 
from training set are inserted. Then the step 2 is 
carried out.

4. The step 3 is repeated until the end of the training 
set is reached. The last computation is made for the 
values y(N − 1), …, y(N − m) and x(N), …, x(N − m) 
and the current learning epoch here ends. 

5. If the ending condition of the learning algorithm 
is not fulfilled, the training continues with step 1 and 
a further learning epoch is carried out. 

Until now, we supposed that only one parameter 
x(t) supports prediction. The generalization to more 
such parameters is straightforward. The described 

model can be also easily modified if the prediction 
has to be made not one time step ahead, but several 
time steps ahead. Clearly, if the task is to predict y(t) 
for n consecutive time steps t, t + 1, …, t + n − 1, 
then the network must have n output neurons. As 
the time series prediction falls within regression 
problems, the output neurons are chosen to be linear 
and as the error function, the sum‑of‑square error 
function is chosen. Usually only one hidden layer 
with logistic neurons is used. The way the network 
is trained on the training set is similar to that used 
for classification. 

CONCLUSIONS

Neural networks provide powerful means for solv-
ing the classification and regression problems. As 
many economic applications can be formulated in the 
terms of classification or regression, neural networks 
might play an important role in the effort to build 
up more exact and accurate quantitative models in 
economics and management. Often the neural net-
work models were found to provide generally better 
results than the classical statistical models, although 
the computational effort is usually several orders of 
magnitude higher.

Decades ago, neural networks applications required 
a big effort as no commercial software was at hand. 
At present, neural networks are part of the majority 
of statistical packages with user‑friendly graphical 
interface and easy data input compatible with the 
standard table processor formats. However, for its 
successful utilization in practical applications, the 
knowledge of at least the basic principles of the neural 
network theory is essential. This paper discusses the 
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basic principles, which the neural network models 
are based on, and sum up the important principles 
that must be respected in order that their utilization 
in practice could be efficient. 
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