
150	 Agric. Econ. – Czech, 57, 2011 (3): 150–157

Neural networks provide powerful models for the
statistical data analysis. Their most prominent feature
is their ability to learn the dependencies based on
a finite number of observations. After learning, the
knowledge acquired from the learning samples can
be generalized to the yet unseen observations. In the
last two decades, the neural networks have been suc-
cessfully used in many applications in various fields
of science and technology. Problems solved have
been mostly the classification or regression problems.
Many problems in the field of economics can also be
regarded in the terms of classification or regression
and neural networks can provide effective means for
their solution (Herbrich 1999; McNelis 2005).

The majority of papers that use neural networks for
the classification tasks in economic applications can
be found in the area of the bankruptcy prediction of
economic agents. The approach is to use the agents’

financial and asset characteristics as an input into
the neural network in order to obtain the estimate of
the probability of bankruptcy on the output. Neural
network based methods often outperform the tradi-
tional classification methods (Atia 2001; Fernandez
and Olmeda 2006).

Probably the largest amount of economic applica-
tions of the neural networks can be found in the field of
the prediction of time series. The usual linear models
used in statistics perform poorly in the nonlinear cases.
However, neural networks are able to approximate
any continuous function and therefore they can be
expected to provide effective nonlinear models for
different time series and thus allow for better predic-
tions. Many authors tried with success to predict the
currency exchange rates, as Verkooijen (1996), who
linked them to the fundamental variables like GDP
and the trade balance, or Emam and Min (2009) and

Economic classification and regression problems
and neural networks

Ekonomické klasifikační a regresní úlohy a neuronové sítě

Arnošt VESELÝ

Department of Information Engineering, Faculty of Economics and Management,
Czech University of Life Sciences, Prague, Czech Republic

Abstract: Artificial neural networks provide powerful models for solving many economic classifications, as well as regres-
sion problems. For example, they were successfully used for the discrimination between healthy economic agents and those
prone to bankruptcy, for the inflation-deflation forecasting, for the currency exchange rates prediction, or for the predic-
tion of share prices. At present, the neural models are part of the majority of standard statistical software packages. This
paper discusses the basic principles, which the neural network models are based on, and sum up the important principles
that must be respected in order that their utilization in practice is efficient.

Key words: multilayer neural networks, classification, bankruptcy prediction, time series prediction, neural network trai-
ning, error functions

Abstrakt: Umělé neuronové sítě poskytují efektivní metody pro řešení mnoha ekonomických klasifikačních a regresních
problémů. S úspěchem byly například použity pro klasifikaci ekonomických objektů z hlediska jejich náchylnosti k ban-
krotu nebo pro předpovědi vývoje inflačně-deflačních křivek, vývoje devizových kursů nebo vývoje ceny akcií. Neuronové
modely jsou nyní součástí většiny standardních statistických softwarových produktů. Tento článek osvětluje základní
principy, na kterých jsou neuronové modely založeny, a shrnuje důležitá upozornění, která je třeba respektovat, aby jejich
použití v praxi bylo efektivní.

Klíčová slova: vícevrstvé neuronové sítě, klasifikace, predikce bankrotu, predikce časových řad, učení neuronových sítí,
chybové funkce

Supported by the Ministry of Education, Youth and Sports of the Czech Republic (Project No. MSMT 6046070904).

Agric. Econ. – Czech, 57, 2011 (3): 150–157	 151

many others. Neural networks were also used for the
inflation forecasting. For example Nakamura (2005)
evaluated the usefulness of neural networks in an
inflation forecasting experiment using the recent U.S
data. In his experiment, the neural networks outper-
formed the autoregressive models. McNelis (2005)
studied the forecasting of inflation and deflation on
the data from Hong Kong and Japan.

Neural network models are part of the statistical
packages, which are on the market today, such as
the Statistica, the SPSS or the SAS. All these pack-
ages have a user-friendly interface and can be easily
used in a similar way as the standard statistical or
data mining methods are. The input data can be in
a standard table processor format, for example in
an Excel table, and can be easily imported into the
used software. Users may utilize their own data or
may find data on the Internet. Thus they can easily
make use of these sophisticated methods to improve
their manager decisions.

However, using these methods effectively and
interpreting properly the results means to know
the underlying fundamental principles, which they
are based on. Of course, one may choose a certain
method in an haphazard manner and accept those
default values of its parameters, which the software
supplies. Acting this way means to get worse results
or sometimes even misleading results leading to the
totally wrong conclusions or predictions. The objec-
tive of this paper is to present the basic principles
the neural networks methods are based on paying
special attention to the features that one must know
to choose an appropriate neural model architecture
and proper values of its parameters.

METHODOLOGY AND METHODS

Artificial neuron

For building up neural networks, a simple model of
physiological neurons called simply neuron is used.
The neuron is a simple information-processing unit.
It takes a vector of the real-valued inputs, calculates
a linear combination of these inputs, adds a constant
value called bias or threshold and then applies on the
resulting sum an output (activation) function. More
precisely, given the inputs x1, ..., xn, the output y is
computed according to the formula





n

i
ii bxwy

1

)((1)

where each wi is a real-valued constant called weight
that determines the contribution of the input xi to the

neuron output y, b is the bias (threshold) and ϕ(⋅) is
the output function. The computation of the neuron
is illustrated in Figure 1.

To simplify the notation, we imagine an additional
constant input x0=1 with weight w0=b and we write

 
 


n

i

n

i
iiii xwbxw

1 0

 and










 



n

i
ii xwy

0

	 (2)

The mostly used output functions are the threshold
function σ(x)



 


otherwise0

0if1
)(

y
x 	 (3)

the sigmoid function f(x)

0,
e1
1)(


 kxf -kx 	 (4)

the logistic function, which is the sigmoid function (4)
with k = 1 or the identity function ϕ(x) = x. Neuron
with the identity output function is usually called
the linear neuron.

Multilayer feedforward networks

Multilayer feedforward networks form an important
class of neural networks (see for example Haykin
1999). The network consists of a set of sensory units
(receptors) that constitute the input layer, one or
more hidden layers of the computation nodes and an
output layer that consists also of computation nodes.
Computing units in the hidden and output layers are
the logistic or sigmoid neurons. In the output layer,
also linear neurons might be used. Only neurons of
the neighbor layers are connected and the input signal
propagates through the network only in the forward
direction. The strength of the connection going from
i-th neuron of the certain layer to the j‑th neuron of
the next layer is denoted wji. When we use the term
L-layer network, we refer to a network with L layers
of computing units. Thus we shall call a network with
one hidden layer a two-layer network, a network with

 ()

b

y

x1

xn

w1

w2

wn

x2

Figure 1. Formal model of a physiological neuron

152	 Agric. Econ. – Czech, 57, 2011 (3): 150–157

two hidden layers a three-layer network and so on. A
layer network with n inputs and m outputs represents
m functions with n arguments. These functions can
be easily expressed explicitly. For example, a two-layer
network (see Figure 2) with n receptors, one output
and m hidden units represents the function

























  

 
0

1 0

WxwWy
m

j

n

i
ijij 	 (5)

Here Wj is the weight of the connection between
j-th neuron at the hidden layer and the output neuron
and wji is the weight of the connection between the
i-th input neuron and the j-th neuron at the hidden
layer. All neurons in the hidden layer have the same
output function ψ(⋅) and the output neuron has the
output function ϕ(⋅).

Neural network learning

Multilayer feedforward networks can be used for
solving different classification or regression problems.
The behavior of a neural network is determined by the
set of its weights. Therefore, the crucial problem is
how to determine the weights in the given problem to
get the neural network with the desired behavior.

The neural network approach involves the parameter
learning from examples. Neural network learning
or training means to have an adaptive procedure in
which the weights of the network are incrementally
modified. The learning process consists in updating
the weights, so that an error function dependent on
the network output and the known target value is
reduced. Algorithms used for the learning purposes

are based on the following methods of adaptation:
gradient learning, simulated annealing and genetic
evolution.

Gradient learning

Gradient learning is based on a traditional math-
ematical method of searching the local minimum
of a function. Assume that all weights of the neural
network are ordered and constitute a vector w. The
gradient algorithm can be formulated as follows:
Algorithm of the gradient descent search:
1. At the beginning, the weights are set equal to small
random values.
2. At the n-th step, the value of gradient gradE(wn−1)
is estimated. For the estimation, one or more elements
of the learning set are used. Then the weight vector
wn−1 is modified according to

wn = wn−1 − ε gradE(wn−1) + µ ∆wn−1− γ wn−1	 (6)

where ε > 0 determines the rate of the weight vec-
tor change, ∆wn−1 = wn−1− wn−2 is the weight vector
change in the previous n − 1-th step of the algorithm,
0 ≤ µ ≤ 1 is a constant called the momentum and γ > 0
is a regularization (weight decay) constant.

If search algorithm starts with small weights, the
output function of the network represents in the
weight space roughly the linear surface. The reason
is that the neuron output functions are either linear
or sigmoid functions, and that the sigmoid functions
are near zero approximately linear. Subtraction of
γwn−1 helps to keep the weights small which means
to have a smoother error surface and this helps the
algorithm to escape the local minima.

The use of momentum in the algorithm represents
a minor modification of the classical gradient descent
algorithm, yet it may improve the learning behavior of
the algorithm. It has the effect of gradually increas-
ing the step size of the search in regions where the
gradient is unchanging and thus to accelerate the
learning process. It also helps to prevent the learn-
ing process from terminating in some shallow local
minimum of the error surface.

The gradient gradE(w) is usually calculated on the
learning set by the means of the algorithm named back
propagation of error. Sometimes also the matrix H,
known as the Hesian matrix, is on the learning set
evaluated. Knowing H makes it possible to estimate
the optimal size of the weights change and thus to
accelerate the process of learning. Therefore, the
algorithms known as the Quasi-Newton algorithm,
the conjugate gradients algorithm and the Levenberg-
Marquart algorithm, which all make the use of the

k

j

wjk

output layer

hidden layer

input layer

input

output

Figure 2. Two-layer feedforward neural network

i

Wij

k

j

wjk

output layer

hidden layer

input layer

input

output

Figure 2. Two-layer feedforward neural network

i

Wij

Figure 2. Two-layer feedforward neural network

Agric. Econ. – Czech, 57, 2011 (3): 150–157	 153

matrix H estimate, are quicker than the standard
back propagation algorithm.

Simulating annealing

The method is based on the analogy between anneal-
ing of solids and solving optimalization. It is a modi-
fied Monte Carlo method based on the Metropolis
algorithm. In the n-th step of the algorithm, the
weight vector w of the neural network is modified
by a small randomly generated step. If the new error
value is smaller than the old one, the step is accepted.
Otherwise, the new value of weight vector is accepted
only with the probability

T
E

P



 exp

Here ∆E is the difference between the new and old
value of the error function and T is parameter called
temperature. Temperature controls the probability of
accepting a step in the wrong direction and during
learning process, it is continuously decreasing.

Genetic evolution (Genetic algorithm)

This method starts with a population of neural
networks represented by its weight vectors. All weight
vectors are unequivocally encoded into a string of real
numbers called genome or chromosome. The ability of
a neural network, represented by its genome, to solve
the underlying regression or classification problem is
measured with the fitness function, which might be,
for example, a negatively taken error function. From
the current population, there are selected couples for
“breeding”. The greater value of the fitness function
means the greater probability of being chosen into
the parents’ couple. Each parent couple breeds two
children that come into being by the means of the
procedure called crossover. During the crossover,
parts of parents’ genomes are shuffled. The incurred
children are then put into the new generation. After
the new generation is created, its genomes undergo
a small probability process called mutation. In the
mutation process, one randomly chosen gene of the
genome is taken and its value randomly changed.
As new generations come into being, their ability to
solve the underlying problem ameliorate.

Error functions

The neural network performance criterion is based
on the error function E(w) evaluated on the training

set. The mostly used error functions are the sum-
of-square error function for regression tasks and
the cross-entropy error function for classification
tasks.

In a regression problem, the neural network should
learn s n-argument functions

fα(x1, …, xn) = fα(x), α = 1, …, s 	 (7)

and the training set T consists of N samples

T = {(xi, ti), i = 1, …, N }, xi = (x1
i, …, xn

i),
 ti = (t1

i, …, ts
i)	 (8)

The commonly used error function is the sum-of-
square error function


 

 
N

i

s
iii

S tyE
1 1

2)),((
2
1)(wxw 	 (9)

where w is the vector of the neural network weights
and yα

i is the output of the α-th output neuron if the
sample vector xi is on its input.

In a classification problem, the input vectors are
classified into s classes Cα. The classes are coded us-
ing the so-called 1-of-s coding scheme. According
to this scheme, the membership of input x is coded
by the binary vector t of length s. Each element tα
of t takes the value 1 if the input vector belongs to
the class Cα, and it takes value 0 otherwise. The ob-
vious advantage of this coding scheme is that the
conditional expectation values of variables tα equal
to the conditional probabilities of classes. For two
mutually exclusive classes C+

 and C−, a more simple
way of coding can be adopted. Instead of the vector
t, a single scalar target variable t is used, the value
of which is 1 if the vector x belongs to the class C+
and 0 if it belongs to the class C−.

In the role of the error function, we can use the
above described sum‑of‑square error function or the
so- called cross-entropy error function


 


N

i

s
iii

CE ytE
1 1

)),(log()(wxw 	 (10)

From the detailed statistical analysis by the maxi-
mum likelihood method, it follows that using the
cross-entropy function is more appropriate in clas-
sification problems (Bishop 1996).

Preparing data

At the beginning, the data must be attentively scru-
tinized and the input vectors with missing component
values must be either discarded or the missing values

154	 Agric. Econ. – Czech, 57, 2011 (3): 150–157

must be substituted with their probable values. For this
purpose, some standard statistical method can be used.
For the non-categorical data, the simplest substitution
utilizes the average value of the missing component,
computed over the whole data set. For categorical data,
we may estimate the probabilities of the particular
values and substitute the missing values according to
this probability distribution estimate. A more elaborate
approach is to express the variable with missing values
in terms of other variables and then to fill the missing
values according to the regression function.

After getting rid of the missing values, the data
should be normalized. If we suspect the data to be very
redundant, we ought to consider their transformation
into a feature space with a reduced dimension.

The data should be randomly separated into train-
ing, validation and test sets. During the training
period, the training and validation sets are used.
Vectors from the training set are used for comput-
ing the weight vector change, and the vectors from
the validation set are used for checking the network
performance on new, yet unseen data. Usually if a
network is trained, its error on the training set is
decreasing. However, from certain moment, the
network starts to behave badly, if the previously
unseen vectors are put on its input. This phenom-
enon is called overfitting. To prevent overfitting, the
training process is stopped as soon as the phenom-
enon of overfitting is observed on the validation set.
Eventually, the final error of the trained network is
estimated on the test set. Of course, a greater training
set leads to better trained networks. On the other
hand, smaller validation and testing sets mean that
the gained results will be less reliable. Therefore,
certain compromise must be adopted. If we have too
little data at our disposal, we should think of the use
of the cross-validation technique known from the
mathematical statistics.

RESULTS AND DISCUSSION

Classification

The majority of applications that use the neural
network for the classification tasks in economics can
be found in the area of the bankruptcy prediction of
economics agents. Bankruptcy prediction has long
been an important and widely studied topic. Banks
need to predict the probability of bankruptcy of a po-
tential client, whether it is a company or a consumer,
since the accuracy of this prediction has significant
impact on their lending decisions and consequently
on their profitability.

The trickiest problem in the classification is to
choose the proper neural network architecture. As
mentioned above, the theoretical analysis recommends
using 1-of-s coding scheme for the class member-
ship coding and using the cross-entropy function
as the error function. Then the minimization of the
cross-entropy function provides a network that ap-
proximates the conditional probabilities of classes
p(Cα|x). As the network outputs are interpreted as
probabilities, the logistic neurons, which have their
output values from interval <0, 1>, are commonly
used in the output layer. If s > 2 and the classes are
mutually exclusive, then all network outputs should
sum to 1. To fulfill this requirement, the so-called
softmax neurons are usually used in the network
output layer (see Figure 3). Softmax neurons have
output functions




 s

j
j

i
sii

a

aaay

1

1

)exp(

)exp(),...,((11)

which obviously sum to 1. If s = 2 and input vectors
are classified into two mutually excluded classes,
the class membership may be coded with the scalar
variable and the neural network may have only one
output logistic neuron.

The numbers of neurons in the input and output
layer are given by the nature of the solved classification
problem. However, it is difficult to estimate the size
of the hidden layer. Thus the number of neurons in
the hidden layer results from experiments. Neurons
in hidden layer cannot be linear, because in this case
the behavior of the network would degenerate to that
of one layer network. Therefore, logistic neurons are
usually chosen for the hidden layer.

k

j

wjk

output layer

hidden layer

input layer

Figure 3. Neural network with softmax output neurons



Wij

aia1

 

as

y1 yi ys

softmax
function s(.)

1(.) i(.) s(.)

oj

k

j

wjk

output layer

hidden layer

input layer

Figure 3. Neural network with softmax output neurons



Wij

aia1

 

as

y1 yi ys

softmax
function s(.)

1(.) i(.) s(.)

oj

Figure 3. Neural network with softmax output neurons

Agric. Econ. – Czech, 57, 2011 (3): 150–157	 155

Training

During training, the input vectors are taken from the
training set and the neural network weight vector is
adopted in a stepwise manner according to the before
chosen learning algorithm. Till the network architec-
ture is definitively settled, some of the fast learning
algorithms that are based on the Hessian matrix are
used (e.g. conjugate gradients algorithm). Eventually,
the classical backpropagation algorithm with the mo-
mentum and weight decay parameters is used. We can
start learning experiments with the default values of
the momentum and the weight decay and then we may
try to improve the acquired results by the gradual little
change of their value. The overfitting is usually avoided
automatically, due to the used software package that is
continuously testing the neural network generalization
efficiency on the validation set.

Classification error

Very often the input vectors are classified into
two disjunctive categories C+ and C−. Then besides
the overall error e, the quality of classification also
depends on two parameters named sensitivity and
false alarm. The network classifies the input vectors
with sensitivity s if s × 100% of the input vectors from
category C+ are correctly determined as being from
the category C+. The network classifies the input
vectors with the false alarm f, if f × 100% of inputs
from category C− are incorrectly determined as being
from the category C+. The functional dependence of
sensitivity on the false alarm is the so-called ROC
curve (see Figure 4). The overall error e depends on
the sensitivity s and the false alarm f

  fse)1((12)

where π+ and π− are incidences of the categories C+ and
C−. Clearly, in applications as the bankruptcy prediction
having a network with big sensitivity s is important.

However, according to the ROC curve, the increase of
the sensitivity s is followed by the increase of the false
alarm f and usually also with the increase of the overall
error e. So some compromise must be adopted.

The values of e, s, and f are eventually estimated on
the testing set. How good these estimates are can be
answered using the standard statistical technique of
confidence intervals (see for example Michell 1997).
Assume N be the size of the testing set. Then the
confidence interval of e is

N
eeze c
)1(

 	 (13)

where zc is the constant that defines the width of the
smallest interval about the mean that includes 100c%
of the total probability mass under the bell-shaped
Normal distribution (e.g. for c = 0.95 the value is
zc = 1.96). The confidence intervals for s and f can
be calculated in the same way.

Time series prediction

Probably the largest amount of economic applica-
tions of neural networks can be found in the field
of prediction of time series. Neural network models
were successfully used for the inflation‑deflation
forecasting, for the currency exchange rates predic-
tion or for the prediction of share prices. They often
outperformed the standard statistical methods com-
monly used for time series prediction. However, the
time series prediction using neural network is far
from straightforward.

Assume that the value y(t) at time t be predicted
using the knowledge of its m previous values y(t – 1),
 ..., y(t – m) and the knowledge of m + 1 values of some
parameter x(t), x(t – 1), …, x(t – m). The method the
neural network uses for predicting the values of the
variable y in time instants t, t + 1, t + 2, … can be
described as follows.
1. Values x(t), x(t – 1), …, x(t – m) of x are put into
some shift register X and values y (t – 1), …, y(t – m)
are put into another shift register Y. Registers X and Y
are connected to the receptors of the neural network
(see Figure 5). The neural network computes z(t),
which is considered to be a prediction of y(t).
2. In the next instant, the values in the registers X
and Y are shifted one place to the right. Into the
first position of register X, the new value of x is put.
Into the first position of the register Y, the value of
y, which was in the preceding time instant predicted
and which meanwhile materialized, is put. The output
of the neural network determines the new value of y
predicted for the current instant.

sensitivity s

sensitivity s

1

Figure 4. ROC curve

false alarm f10 0 1 false alarm f

 1

Figure 4. ROC curve

156	 Agric. Econ. – Czech, 57, 2011 (3): 150–157

3. To obtain predictions of y for the further time
instants, the step 2 is repeated.

However, before the network is used for predic-
tion, it must be trained on the training set in order
that its predictions could be reasonable. Assume the
training set

y(N), …, y(1), x(N), …, x(1) , N >> m

Then the training procedure can be described as
follows.

1. The first m + 1 values x(m + 1), x(m), …, x(1) of
variable x are put into the shift register X and the
first m values y(m), …, y(1) of variable y are put into
the shift register Y.

2. The output of the network is considered to be a
prediction of y. The predicted value of y is compared
with the true value of y in the training set and the
error of prediction is evaluated. Then according to
the before chosen learning algorithm, the weight
vector of the network is modified.

3. The values in the registers X and Y are shifted
one position to the right and into the first positions
of the registers X and Y, the next values of x and y
from training set are inserted. Then the step 2 is
carried out.

4. The step 3 is repeated until the end of the training
set is reached. The last computation is made for the
values y(N − 1), …, y(N − m) and x(N), …, x(N − m)
and the current learning epoch here ends.

5. If the ending condition of the learning algorithm
is not fulfilled, the training continues with step 1 and
a further learning epoch is carried out.

Until now, we supposed that only one parameter
x(t) supports prediction. The generalization to more
such parameters is straightforward. The described

model can be also easily modified if the prediction
has to be made not one time step ahead, but several
time steps ahead. Clearly, if the task is to predict y(t)
for n consecutive time steps t, t + 1, …, t + n − 1,
then the network must have n output neurons. As
the time series prediction falls within regression
problems, the output neurons are chosen to be linear
and as the error function, the sum‑of‑square error
function is chosen. Usually only one hidden layer
with logistic neurons is used. The way the network
is trained on the training set is similar to that used
for classification.

CONCLUSIONS

Neural networks provide powerful means for solv-
ing the classification and regression problems. As
many economic applications can be formulated in the
terms of classification or regression, neural networks
might play an important role in the effort to build
up more exact and accurate quantitative models in
economics and management. Often the neural net-
work models were found to provide generally better
results than the classical statistical models, although
the computational effort is usually several orders of
magnitude higher.

Decades ago, neural networks applications required
a big effort as no commercial software was at hand.
At present, neural networks are part of the majority
of statistical packages with user‑friendly graphical
interface and easy data input compatible with the
standard table processor formats. However, for its
successful utilization in practical applications, the
knowledge of at least the basic principles of the neural
network theory is essential. This paper discusses the

x(t-1)x(t) x(t-m)y(t-2) y(t-1) y(t-m)

input x(t)

predicted value
z(t) of the

variable y(t)

input y(t-1)

output
neuron

hidden layer

receptors

shift registr Xshift registr Y

Figure 5. Time series prediction with neural network
Figure 5. Time series prediction with neural network

Agric. Econ. – Czech, 57, 2011 (3): 150–157	 157

basic principles, which the neural network models
are based on, and sum up the important principles
that must be respected in order that their utilization
in practice could be efficient.

REFERENCES

Atia A.F. (2001): Bankruptcy prediction for credit risk
using neural networks: A survey and new results. IEEE
Transactions on Neural Networks, 12: 929–935.

Bishop C.M. (1996): Neural Networks for Pattern Recogni-
tion. Oxford University Press, Oxford.

Emam A., Min H. (2009): The artificial neural network
for forecasting foreign exchange rates. International
Journal of Services and Operational Management, 5:
740–757.

Fernandez E., Olmeda I. (2006): Bankruptcy Prediction
with Artificial Neural Networks. In: From Natural to

Artificial Neural Computation, Springer, Berlin; ISBN
978-3-540-59497-0.

Haykin S. (1999): Neural Networks. Prentice Hall, London;
ISBN 0-13-273350-1.

Herbrich R., Keilbach M., Graepel T., Bollmann-Sdorra P.,
Obermayer K. (1999): Neural networks in economics:
Background, applications, and new developments. Ad-
vances in Computational Economics, 11: 169–196.

McNelis P.D. (2005): Neural Networks in Finance. Elsevier
Academic Press, Oxford; ISBN 978-0-12-485967-8.

Mitchell T.M. (1997): Machine Learning. McGraw-Hill,
Boston; ISBN 0070428077.

Nakamura E. (2005): Inflation forecasting using a neural
network. Economics Letters, 86: 373–378.

Verkooijen W. (1996): A neural network approach to long-
run exchange rate prediction. Computational Econom-
ics, 9: 51–65.

Arrived on 11th May 2010

Contact address:

Arnošt Veselý, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic
e-mail: vesely@pef.czu.cz

