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The sharp changes in the global food commodity 
prices in the recent years have raised concerns to 
the governments in developing countries as the low 
income groups became more vulnerable to higher 
inflation rates. Increasing volatility in the agriculture 
commodity prices creates uncertainties to farmers to 
meet the rising demand for agricultural food com-
modities, and to consumers to manage their future 
spending plans.

Analysts attribute the rising volatility in the food 
commodity prices to a number of factors, among them 
the speculations in future commodity markets (FAO 
2008); crude oil price changes and its ramification 
on the bio-fuel commodity markets (Institute for 
Agriculture and Trade Policy 2008); Jeffrey Frankel 
(2008) attributes the soaring prices in food commodi-
ties to structural change in the global demand for food 

items, mainly due to the high and rapid economic 
growth in the countries like China and India. Whatever 
would be the prime cause behind the soaring food 
commodity prices, it is important to point out that the 
volatility modeling can help capturing the empirical 
regularities that characterize the commodity markets. 
While the literature on the volatility of food com-
modity markets in general is scarce, compared to the 
literature on the financial asset markets, a number of 
authors investigated the volatility in food commodity 
markets from the perspective of the spillover effect 
of the crude oil price (Babula and Somwaru 1992; Uri 
1996; Du et al. 2009). Broadly speaking, the literature on 
the volatility forecast in commodity markets includes 
two main approaches, the implied volatility models 
which are based on the option pricing formulas, and 
the conditional volatility models of the time series 
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analysis. An option is a contract that allows the holder, 
without requiring, to sell (put option) or buy (call op-
tion) underlying commodity at a pre-specified price 
(strike or exercise price). The more volatile the price 
of the underlying commodity, the higher the option’s 
price. Given that the option market is efficient, the 
option price reflects the future expected volatility. 
More specifically, option prices are functions of four 
observable variables (i.e., the price of the underlying 
asset, the exercise price, the time to the maturity of 
the option, and the risk-free rate of interest), and one 
non-observable variable which is the expected vola-
tility of the underlying commodity price. Since the 
option price is observable, and it is a monotonically 
increasing function of the expected volatility, then 
via the option pricing formula it is possible to derive 
the expected volatility for the remaining period of 
the option maturity. Such expected volatility which is 
based on the option pricing formula is usually known 
as the implied volatility.

However, it should be noted that the implied volatil-
ity approach of the expected volatility has a number 
of drawbacks. Among them, the standard option 
pricing formula included in Black and Scholes (1973) 
applies only to the European type option, but it has no 
closed-form solution for the more popular American 
and exotic options1. In addition, as noted by Kroner et 
al. (1993), the volatility forecast based on the implied 
volatility approach may be more appropriate for the 
short-term forecast, but it may not yield a reliable 
long-term forecast since usually trading is thin in the 
options that are far away from their maturity dates.

As a result, in this paper we employed the time 
series modeling approach in forecasting the condi-
tional volatility in the food commodity market. The 
conditional volatility models include the ARCH/
GARCH models developed by Engle (1982); and the 
stochastic volatility (SV) models, proposed by Taylor 
(1994). While the conditional volatility models of 
the ARCH/GARCH-type define volatility as a de-
terministic function of the past innovations, the SV 
models treat volatility as a stochastic process. The 
ARCH/GARCH-type models are relatively easy to 
estimate compared to the SV models which are di-
rectly connected to the diffusion process, and thus 
involve the volatility process that does not depend on 
the observable variables, and are therefore relatively 
more difficult to estimate (Shephard 2005). 

A question which needs to be addressed is, why do 
we need to investigate volatility in the food commodity 
markets? In the light of the option pricing formula of 
Black and Scholes discussed above, robust estimates of 

volatility of food prices enhance a better option pricing 
mechanism in future commodity markets. Moreover, 
volatility estimates allow the investigation of empiri-
cal regularities that characterize the food commodity 
markets. Among the empirical regularities that char-
acterize asset prices, there are the fat-tailedness and 
volatility persistence. It is well documented (Bollerslev 
et al., 2003) that the fat-tailedness in asset markets is 
intimately related to the so-called volatility clustering, 
which describes the phenomena that large changes 
in asset prices, in either sign, tend to be followed 
by large changes, and small changes are followed by 
small changes, reflecting market irregularities. Thus, 
volatility modeling can reveal the market imperfection 
in the global food commodity markets.

Bollerslev et al. (2003) indicated that the normality 
assumption is at odds when price changes exhibit the 
fat-tailedness (leptokurtosis behavior). It has been 
evidenced recently by a number of authors (Brooks 
and Persand (2003), Vilasuso (2002), and Hansen 
and Launda (2003), the standard GARCH models 
which use the normality assumption has an inferior 
forecasting performance compared to the models that 
reflect skewness and kurtosis in innovations.

The paper is divided into four sections. Section two 
includes the methodology of the research. Section 
three deals with the estimation procedure and discus-
sion of the results. In the final section, we conclude 
the research findings.

METHODOLOGY

Given that pt is the commodity price at time t, 
and It–1 is the information set at time t – 1, then the 
standard GARCH(1,1) model specified on normal 
distributed and Student t-distributed error terms 
is defined as:
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Given an initial value for 2
t  (the conditional volatil-

ity), the estimated values for w, α and β, in equation 
(3) can be used for estimating expected volatility at 

1Barone-Adesi and Whaley (1987) propose an approximation method for pricing American options.
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any given horizon time. Using equation (3), the ex-
pected volatility can be set (see Engle and Bollerslev 
1986, equation 22) as:
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Alternatively, using the recursive substitution of 
equation (3) we get
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Equations (4) and (5) yield the forecast of condi-
tional volatility at the horizons 1, 2, …, k. Bollerslev 
et al. (2003), discusses the usefulness of the GARCH 
models in the short-run volatility forecast.

It is well documented that the standard GARCH 
specification as stated in equation (1) fail to fully ac-
count for the leptekurtosis of the high frequency time 
series when they are assumed to follow the normal 
distribution. Bollerslev et al. (2003) indicate the ARCH 
models with conditional normal errors; the result in a 
leptokurtic unconditional distribution. However, the 
degree of the leptokurtosis induced by the time-varying 
conditional variance often does not capture all of the 
leptokurtosis present in the high frequency speculative 
price data. To circumvent this problem, Bollerslev et 
al. (2003) suggest the use of the Student t-distribution 
with the degrees of freedom greater than two. 

When the residual errors in (3) distributed Student 
t-distribution the density function in equation (3) 
can be specified as:
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where Г(.), denotes the gamma function, and η is the 
degrees of freedom. Now, we have two competing 
models, (equations 1 and 6), for the expected condi-
tional volatility specification in equation (5).

Given there is no common single conventional 
model selection criteria, to assess the goodness-of-
fit for the two models, we employed the predictive 
power performance criteria, and four other criterias 
including the log-likelihood function and the Akaike 
information criteria (AIC), the Schwarz criteria (SC), 
and the Hannan-Quinn (HQ), as indicated below:
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where k and (T) are respectively the number of param-
eters and the sample size, and l is the lag length. The 
model that minimizes the above information criteria 
is considered the best fit, given that the model also 
yield the highest log likelihood value.

VOLATILITY PERSISTENCE

The ARFIMA(p, d, q) process

tt
d LyLL )()()1)(( 	 (7)

where
p

j

j
j LL

1

)( , 

q

j

j
j LL

1

)(

.....
2

)1(11)1(
2

0

LdddLLjL jj

j

dd

and L is the lag operator, d is the fractional differenc-
ing parameter, all roots of φ (L) and θ(L) assumed to 
lie outside the unit circle, and εt is the white noise. 

GARCH(p, q) models are often used for modeling 
the volatility persistence, which has the features of 
the relatively fast decaying persistence. However, in 
some cases the volatility shows a very long tempo-
ral dependence, i.e., the autocorrelation function 
decays very slowly. This motivates considering the 
Fractionally Integrated Generalized Autoregressive 
Conditional Hetroskedasticity (FIGARCH) process 
(Baillie 1996) defined as2:
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where φ (L) and β(L) are respectively the AR(p) and 
MA(q) vector coefficients and 22

tttv .
Following Baillie et al. (1996), Bollerslev and 

Mikkelsen (1996), Granger and Ding (1996), the pa-
rameters in the ARFIMA(p, d, q) and FIGARCH(p, 
d, q) models in (7) and (8) estimated using the quasi-
maximum likelihood (QMLE) method. In the ARFIMA 
models, the short-run behavior of the data series is 
represented by the conventional ARMA parameters, 
while the long-run dependence can be captured by the 
fractional differencing parameter, d. A similar result 
also applies when modeling the conditional variance, 
as in equation (8). While for the covariance stationary 
GARCH(p, q) model, a shock to the forecast of the 

2For the FIGARCH(p, d, q) model to be well defined, and the conditional variance positive for all t, all the coefficients 
in the ARCH representation must be non-negative.
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future conditional variance dies out at an exponential 
rate, for the FIGARCH(p,d,q) model, the effect of a 
shock to the future conditional variance decay at low 
hyperbolic rate. As a result, the fractional differenc-
ing parameter, d, in the equations (7) and (8) can be 
regarded the decay rate of a shock to the conditional 
variance (Bollerslev and Mikkelsen 1996).

In general, allowing for the values of d in the range 
between zero and unity (or, 0 < d < 1) adds a flex-
ibility that plasy an important role in modeling of 
the long-run dependence in time series3.

Bollerslev (1996, indicates that if d = 0, the series is 
covariance stationary and possesses a short memory 
process, whereas in the case of d = 1, the series is 
non-stationary. However, in the case of 0 < d < 0.5, 
the series, even though covariance stationary, its 
auto-covariance decays much more slowly than the 
ARMA process. If d is 0.5 < d < 1, the series is no 
longer covariance stationary, but still mean reverting 
with the effect of a shock persist for a long period of 
time, and in that case, the process is said to have a 
long memory. Given a discrete time series, yt, with 
autocorrelation function, ρj, at lag j, Mcleod and Hipel 
(1978) define long memory as a process:

n
n

nj
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characterized as non-finite. In the non-stationary 
and in the long memory process, the shock et at time 
t, continues to influence the future yt+k for a longer 
horizon, k, than would be the case for the standard 
stationary ARMA process. While there are varieties 
of ways to estimate the parameters of (3) and (4), in 
this paper we employed the maximum likelihood 
estimator.

EMPIRICAL RESULTS

Estimation of parameters

The analysis in this research is based on monthly 
data for six food commodity prices, during the sample 
period from October 1984 to September 2009. The 
food commodities include wheat, rice, sugar, beef, 
coffee, and groundnut. All price series were collected 
from the Index Mundi website, which in turn was 
extracted from the the IMF, Primary Commodity 
Price Tables4. We employed the maximum likelihood 
estimation method to estimate the parameters in 
equations (2)–(5). The graphical exposition of price 
changes (see the Figures 1–6) indicates the evidence 
of volatility clustering, which is the phenomenon 
that large changes in asset prices, in either sign, tend 
to be followed by large changes, and small changes 
are followed by small changes. Table 1 presents the 
estimation results of the parameters in equation (3) 
under both the normal and the t-distribution errors. 
Results of GARCH(1,1) parameters show the evidence 
of stationarity of the conditional volatility; whereas 
the sample autocorrelation statistic indicated by the 
squared values of Ljung-Box, Q(5) suggests that the 
conditional homoskedasticity can be rejected for all 
six commodities. Also the results of the LM statistics 
for ARCH(5) errors confirm the significance of the 
ARCH effects in the data. The log likelihood and the 
information criteria test results overwhelmingly sup-
port the t-distribution specification of the innovations 
in the AR(1) model in equation (1). This is consistent 
with the existing literature on asset markets, which 
indicates the evidences of the conditional leptokurtosis 
in the high and medium frequency data analysis (Bai 

3See Diebold and Rudebuch (1989); Cunado et al (2005); and Ding and Granger (1996) for a detailed discussion about 
the importance of allowing for non-integer values of integration when modeling long-run dependence in the condi-
tional mean of time series data.

4http://www.indexmundi.com/
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Figure 2. Sugar price change 
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Figure 3. Rice price change 
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Figure 4. Coffee price change 

25

20

15

10

5

0

5

10

15

20

25

O
ct

8
4

A
u
g
8
5

Ju
n
8
6

A
p
r
8
7

Fe
b
8
8

D
e
c
8
8

O
ct

8
9

A
u
g
9
0

Ju
n
9
1

A
p
r
9
2

Fe
b
9
3

D
e
c
9
3

O
ct

9
4

A
u
g
9
5

Ju
n
9
6

A
p
r
9
7

Fe
b
9
8

D
e
c
9
8

O
ct

9
9

A
u
g
0
0

Ju
n
0
1

A
p
r
0
2

Fe
b
0
3

D
e
c
0
3

O
ct

0
4

A
u
g
0
5

Ju
n
0
6

A
p
r
0
7

Fe
b
0
8

D
e
c
0
8

Beef price change

Figure 5. Beef price change 



Agric. Econ. – Czech, 57, 2011 (3): 132–139	 137

and Ng 2003). To investigate further the robustness 
of the t-distribution model, we conducted, using 
the out-of-sample forecast analysis, the predictive 
power of the two models. Diebold and Mariano (1995) 

(DM) test was employed to compare the accuracy of 
forecast results. When comparing the forecasts from 
two competing models; model A, and model B, an 
important question that needs to be taken into account 
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Figure 6. Wheat price change 

Table 1. Estimation of parameters 

Wheat Rice Beef

normal t-dist. normal t-dist. normal t-dist.

w
(p-value)

0.068
(0.24)

0.01
(0.05)

0.58
(0.12)

0.41
(0.00)

0.061
(0.14)

0.004
(0.03)

α
(p-value)

0.00
(0.94)

0.74
(0.00)

0.00
(0.93)

0.003
(0.67)

0.00
(0.93)

0.44
(0.00)

β
(p-value)

0.63
(0.00)

0.10
(0.01)

0.003
(0.95)

0.82
(0.00)

0.24
(0.00)

0.01
(0.79)

Q2 (5)
(p-value)

7.99
(0.15)

286
(0.00)

73.8
(0.00)

44.1
(0.00)

86
(0.00)

12.4
(0.03)

LM (5) 144* 6.83* 96.1* 33.2* 88* 10.9*

Log-likelihood function 177 13 746 –798 12 586 461 13 509

AIC 0.18E-1 0.27E-41 13.12 0.69E-38 0.26E-2 0.13E-40

SC 0.19E-1 0.28E-41 13.62 0.72E-38 0.27E-2 0.14E-40

HQ 0.18E-1 0.27E-41 13.32 0.70E-38 0.26E-2 0.13E-40

Groundnut Sugar Coffee

normal t-dist. normal t-dist. normal t-dist.

w
(p-value)

0.00
(0.94)

0.01
(0.00)

0.068
(0.00)

0.005
(0.00)

0.16
(0.20)

0.04
(0.05)

α
(p-value)

0.28
(0.24)

0.00
(0.81)

0.12
(0.22)

0.00
(0.86)

0.00
(0.94)

0.18
(0.08)

β
(p-value)

0.59
(0.02)

0.25
(0.00)

0.16
(0.01)

0.17
(0.01)

0.38
(0.00)

0.02
(0.66)

Q2 (5)
(p-value)

103
(0.00)

76.6
(0.00)

15.72
(0.01)

15.42
(0.01)

94.1
(0.00)

99.2
(0.00

LM (5) 43.6* 40.62* 5.25* 6.32* 50.03* 110.5*

Log-likelihood function 844 1 2939 907 12912 –230 14530

AIC 0.19E-3 0.63E-39 0.13E-3 0.76E-39 0.28 0.13E-43

SC 0.20E-3 0.66E-39 0.14E-3 0.79E-39 0.29 0.14E-43

HQ 0.20E-3 0.64E-39 0.13E-3 0.77E-39 0.28 0.13E-43

Note: Estimated values of parameters rounded into two decimals; terms in parenthesis are p-values

*significant at 5% significance level
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is, whether the prediction of model A is significantly 
more accurate, in terms of a loss function, than the 
prediction of model B. The Diebold and Mariano 
test aims to test the null hypothesis of the equality 
of forecast accuracy against the alternative of the 
different forecasts across models. Table 2 reports 
the predictive power of the two models (the normal 
distribution and the t-distribution innovations) us-
ing the Root Mean Squared Error (RMSE) of forecast 
values of the conditional volatility.

Results in Table 3 report the FIGARCH(1, d, 1) 
results, and indicate a strong evidence of the sta-
tionary short memory process for the four of the six 
commodities, as only beef and coffee exhibit the long 
memory behavior (covariance non-stationary, but 
mean reverting). This result implies that for the food 
commodities exhibiting the short memory process, a 
shock is not likely to persist for a long period. 

CONCLUDING REMARKS

The paper employs two competing models, including 
the thin tailed the normal distribution and the fat-tailed 
Student t-distribution models, to explore the volatility 
in the global food commodity prices of wheat, rice, beef, 
groundnut, sugar, and coffee. The sample period in the 
study includes monthly data covering the period from 
October 1984 to September 2009. Using the predictive 
power of the volatility forecast and other goodness 
of fit measures, the performance of each model was 
assessed. The analysis in the paper indicates that the  
t-distribution model outperforms the normal distri-
bution model, revealing the evidence of leptokurtosis 
in the volatility of food commodity prices. This result 
implies that if such leptokurtic behavior is not taken into 
account when estimating the conditional volatility, the 
standard option pricing formula of Black and Scholes, 
which depends on the expected volatility parameter, 
could lead into unreliable results when pricing the 
future option contracts in the commodity markets. 
The paper also shows that the volatility of the future 

Table 3. FIGARCH (1,d,1): t-distribution and normal distribution

Parameters Wheat Rice Beef Groundnut Sugar Coffee

t-distribution

(standard error)
0.48

(8.04)
0.44
(7.2)

0.57*
(10.2)

0.42
(6.0)

0.47
(6.6)

0.56*
(10.1)

(standard error)
–0.49
(–7.6)

–0.45
(–7.01)

–0.58
(–10.3)

–0.17
(–2.1)

–0.16
(–1.92)

–0.58
(–10.4)

(standard error)
0.01

(0.01)
0.01

(0.002)
0.4

(0.01)
0.01

(0.01)
0.02

(0.01)
0.01

(0.01)

Log-likelihood function 201 –676 475 837 886 –205

Normal distribution

(standard error)
0.75*
(8.6)

0.55*
(9.9)

0.59*
(9.4)

0.41
(5.01)

0.48
(7.1)

0.63*
(11.87)

(standard error)
–0.39

(–4.36)
–0.59

(–10.4)
–0.44
(–6.3)

–0.05
(–0.58)

–0.19
(–2.44

–0.44
(–7.7)

(standard error)
0.82

(0.62)
9.7

(0.47)
–14.0

(–1.79)
8.28

(0.59)
–6.2

(–2.25)
52.5

(8.47)

Log-likelihood function 97.1 –683 438 850 884 –152

*mean reverting, but long memory process

Table 2. RMSE loss functions and Diebold & Mariano 
test

RMSE loss functions         D&M
statisticnormal t-dist.

Wheat 
p-value

0.0068 0.005 19.19 
(0.00)

Rice 
p-value

0.40 0.006 40.83 
(0.00)

Beef
p-value

0.0062 0.005 24.52 
(0.00)

Groundnut 
p-value

0.0037 0.001 52.3 
(0.00)

Sugar 
p-value

0.0071 0.0079 485 
(0.00)

Coffee 
p-value 0.15 0.0037 12.81

*The loss functions are based on three days ahead fore-
cast errors 
Under the null hypothesis of equal forecast accuracy, 
DM is asymptotically normally distributed



Agric. Econ. – Czech, 57, 2011 (3): 132–139	 139

commodity prices is mean reverting, and exhibits the 
short memory behavior for all commodities, except for 
beef and coffee which showan intermediate memory 
behavior. The short term persistence impliesthat the 
effect of shocks on the future conditional variance 
persist only for short periods.
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