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Abstract: To capture the volatility in the global food commodity prices, we employed two competing models, the thin tai-
led the normal distribution, and the fat-tailed Student ¢-distribution models. Results based on wheat, rice, sugar, beef, cof-
fee, and groundnut prices, during the sample period from October 1984 to September 2009, show the ¢-distribution model
outperforms the normal distribution model, suggesting that the normality assumption of residuals which are often taken
for granted for its simplicity may lead to unreliable results of the conditional volatility estimates. The paper also shows that
the volatility of food commodity prices characterized with the intermediate and short memory behavior, implying that the
volatility of food commodity prices is mean reverting.
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Abstrakt: Pro zkoumadni volatility globdlnich cen potravindfskych komodit bylo pouzito dvou vzajemné si konkurujicich
modelt, tzv. ,thin-tail“ normdalni distribuce a ,fat-tail“ Student-¢ distribuce. Vysledky zalozené na zkoumdni cen pS$enice,
ryze, cukru, hovéziho masa, kdvy a podzemnice olejné s vyuzitim dat za obdobi f{jen 1984—zari 2009 ukazuji, Ze model
t-distribuce dociluje lepsich vysledkt nez model normalni distribuce, coz naznacuje, ze predpoklad normélniho rozlozeni
rezidui, jenz je ¢asto povazovan za samoziejmy pro svou jednoduchost, mtize vést k nespolehlivym vysledkiim podmi-

nénych odhadd volatility. Prace rovnéz ukazuje, Ze volatilita cen potravinaiskych komodit je charakterizoviana chovanim

sttednédobé a kriatkodobé paméti a osciluje tedy kolem priméru.

Klicova slova: volatilita, progndza, fat-tail distribuce, potravinarské komodity

The sharp changes in the global food commodity
prices in the recent years have raised concerns to
the governments in developing countries as the low
income groups became more vulnerable to higher
inflation rates. Increasing volatility in the agriculture
commodity prices creates uncertainties to farmers to
meet the rising demand for agricultural food com-
modities, and to consumers to manage their future
spending plans.

Analysts attribute the rising volatility in the food
commodity prices to a number of factors, among them
the speculations in future commodity markets (FAO
2008); crude oil price changes and its ramification
on the bio-fuel commodity markets (Institute for
Agriculture and Trade Policy 2008); Jeffrey Frankel
(2008) attributes the soaring prices in food commodi-
ties to structural change in the global demand for food
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items, mainly due to the high and rapid economic
growth in the countries like China and India. Whatever
would be the prime cause behind the soaring food
commodity prices, it is important to point out that the
volatility modeling can help capturing the empirical
regularities that characterize the commodity markets.
While the literature on the volatility of food com-
modity markets in general is scarce, compared to the
literature on the financial asset markets, a number of
authors investigated the volatility in food commodity
markets from the perspective of the spillover effect
of the crude oil price (Babula and Somwaru 1992; Uri
1996; Du et al. 2009). Broadly speaking, the literature on
the volatility forecast in commodity markets includes
two main approaches, the implied volatility models
which are based on the option pricing formulas, and
the conditional volatility models of the time series
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analysis. An option is a contract that allows the holder,
without requiring, to sell (put option) or buy (call op-
tion) underlying commodity at a pre-specified price
(strike or exercise price). The more volatile the price
of the underlying commodity, the higher the option’s
price. Given that the option market is efficient, the
option price reflects the future expected volatility.
More specifically, option prices are functions of four
observable variables (i.e., the price of the underlying
asset, the exercise price, the time to the maturity of
the option, and the risk-free rate of interest), and one
non-observable variable which is the expected vola-
tility of the underlying commodity price. Since the
option price is observable, and it is a monotonically
increasing function of the expected volatility, then
via the option pricing formula it is possible to derive
the expected volatility for the remaining period of
the option maturity. Such expected volatility which is
based on the option pricing formula is usually known
as the implied volatility.

However, it should be noted that the implied volatil-
ity approach of the expected volatility has a number
of drawbacks. Among them, the standard option
pricing formula included in Black and Scholes (1973)
applies only to the European type option, but it has no
closed-form solution for the more popular American
and exotic options!. In addition, as noted by Kroner et
al. (1993), the volatility forecast based on the implied
volatility approach may be more appropriate for the
short-term forecast, but it may not yield a reliable
long-term forecast since usually trading is thin in the
options that are far away from their maturity dates.

As a result, in this paper we employed the time
series modeling approach in forecasting the condi-
tional volatility in the food commodity market. The
conditional volatility models include the ARCH/
GARCH models developed by Engle (1982); and the
stochastic volatility (SV) models, proposed by Taylor
(1994). While the conditional volatility models of
the ARCH/GARCH-type define volatility as a de-
terministic function of the past innovations, the SV
models treat volatility as a stochastic process. The
ARCH/GARCH-type models are relatively easy to
estimate compared to the SV models which are di-
rectly connected to the diffusion process, and thus
involve the volatility process that does not depend on
the observable variables, and are therefore relatively
more difficult to estimate (Shephard 2005).

A question which needs to be addressed is, why do
we need to investigate volatility in the food commodity
markets? In the light of the option pricing formula of
Black and Scholes discussed above, robust estimates of

volatility of food prices enhance a better option pricing
mechanism in future commodity markets. Moreover,
volatility estimates allow the investigation of empiri-
cal regularities that characterize the food commodity
markets. Among the empirical regularities that char-
acterize asset prices, there are the fat-tailedness and
volatility persistence. It is well documented (Bollerslev
etal.,, 2003) that the fat-tailedness in asset markets is
intimately related to the so-called volatility clustering,
which describes the phenomena that large changes
in asset prices, in either sign, tend to be followed
by large changes, and small changes are followed by
small changes, reflecting market irregularities. Thus,
volatility modeling can reveal the market imperfection
in the global food commodity markets.

Bollerslev et al. (2003) indicated that the normality
assumption is at odds when price changes exhibit the
fat-tailedness (leptokurtosis behavior). It has been
evidenced recently by a number of authors (Brooks
and Persand (2003), Vilasuso (2002), and Hansen
and Launda (2003), the standard GARCH models
which use the normality assumption has an inferior
forecasting performance compared to the models that
reflect skewness and kurtosis in innovations.

The paper is divided into four sections. Section two
includes the methodology of the research. Section
three deals with the estimation procedure and discus-
sion of the results. In the final section, we conclude
the research findings.

METHODOLOGY

Given that p, is the commodity price at time ¢,
and I, is the information set at time ¢ — 1, then the
standard GARCH(1,1) model specified on normal
distributed and Student ¢-distributed error terms
is defined as:

ln[ Pt Jzyt:p,ws, (1)
Pia

f(&,\,_)~N(0,6,%)

or

f(e,\n.1,_)) ~ st(n;0,6%) (2)

where 1) is degrees of freedom, and
o; =w+ag +Bo; 3)

Given an initial value for o} (the conditional volatil-
ity), the estimated values for w, a and B, in equation
(3) can be used for estimating expected volatility at

1Barone-Adesi and Whaley (1987) propose an approximation method for pricing American options.
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any given horizon time. Using equation (3), the ex-
pected volatility can be set (see Engle and Bollerslev
1986, equation 22) as:

wtag, +po’ if k=1

(4)
w(a+BYE(Ry g\ )

E(c?,\1)=
(t+k t) { ikaZ

Alternatively, using the recursive substitution of
equation (3) we get
w+ag, +po’ if k=1
wll+ (ot +B) +...(a+ B T+ (o + )

+(a+[3)k_1(w+(xat + Be (5)

E(Gt2+k \1,) :{

Equations (4) and (5) yield the forecast of condi-
tional volatility at the horizons 1, 2, ..., k. Bollerslev
et al. (2003), discusses the usefulness of the GARCH
models in the short-run volatility forecast.

It is well documented that the standard GARCH
specification as stated in equation (1) fail to fully ac-
count for the leptekurtosis of the high frequency time
series when they are assumed to follow the normal
distribution. Bollerslev et al. (2003) indicate the ARCH
models with conditional normal errors; the result in a
leptokurtic unconditional distribution. However, the
degree of the leptokurtosis induced by the time-varying
conditional variance often does not capture all of the
leptokurtosis present in the high frequency speculative
price data. To circumvent this problem, Bollerslev et
al. (2003) suggest the use of the Student ¢-distribution
with the degrees of freedom greater than two.

When the residual errors in (3) distributed Student
t-distribution the density function in equation (3)
can be specified as:

T(n+1)/2 (/2
o L n
s Jn_nrm/z)[mszj

for —o<g<® (6)

where I'(.), denotes the gamma function, and n is the
degrees of freedom. Now, we have two competing
models, (equations 1 and 6), for the expected condi-
tional volatility specification in equation (5).

Given there is no common single conventional
model selection criteria, to assess the goodness-of-
fit for the two models, we employed the predictive
power performance criteria, and four other criterias
including the log-likelihood function and the Akaike
information criteria (AIC), the Schwarz criteria (SC),
and the Hannan-Quinn (HQ), as indicated below:

AIC ==2(1/T)+2(k/T)

SC = -2(I/T) + klog(T)/T
HQ =-2(I/T) + 2k log(log(T))/T

where k and (7) are respectively the number of param-
eters and the sample size, and [ is the lag length. The
model that minimizes the above information criteria
is considered the best fit, given that the model also
yield the highest log likelihood value.

VOLATILITY PERSISTENCE
The ARFIMA ((p, d, q) process

O(L)1-L) (v, —p) =O(L)e, 7)

where

p q )
o(L)=D 0L O(L)= 0,
. <

Jj=1

0 2
(1-1)! = Z(j")(-l)fy =1-dL +—d(d;1)L e
=0

and L is the lag operator, d is the fractional differenc-
ing parameter, all roots of ¢ (L) and 8(L) assumed to
lie outside the unit circle, and ¢, is the white noise.

GARCH(p, q) models are often used for modeling
the volatility persistence, which has the features of
the relatively fast decaying persistence. However, in
some cases the volatility shows a very long tempo-
ral dependence, i.e., the autocorrelation function
decays very slowly. This motivates considering the
Fractionally Integrated Generalized Autoregressive
Conditional Hetroskedasticity (FIGARCH) process
(Baillie 1996) defined as?:

o(L)1- L) e} = w+{1-B(L)}v, (8)

where ¢ (L) and B(L) are respectively the AR(p) and
MA(q) vector coefficients and v, = 8,2 —0[2.
Following Baillie et al. (1996), Bollerslev and
Mikkelsen (1996), Granger and Ding (1996), the pa-
rameters in the ARFIMA(p, d, q) and FIGARCH(p,
d, g) models in (7) and (8) estimated using the quasi-
maximum likelihood (QMLE) method. In the ARFIMA
models, the short-run behavior of the data series is
represented by the conventional ARMA parameters,
while the long-run dependence can be captured by the
fractional differencing parameter, d. A similar result
also applies when modeling the conditional variance,
as in equation (8). While for the covariance stationary
GARCH(p, q) model, a shock to the forecast of the

2For the FIGARCH(p, d, q) model to be well defined, and the conditional variance positive for all ¢, all the coefficients

in the ARCH representation must be non-negative.
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future conditional variance dies out at an exponential
rate, for the FIGARCH(p,d,q) model, the effect of a
shock to the future conditional variance decay at low
hyperbolic rate. As a result, the fractional differenc-
ing parameter, d, in the equations (7) and (8) can be
regarded the decay rate of a shock to the conditional
variance (Bollerslev and Mikkelsen 1996).

In general, allowing for the values of d in the range
between zero and unity (or, 0 < d < 1) adds a flex-
ibility that plasy an important role in modeling of
the long-run dependence in time series>.

Bollerslev (1996, indicates that if d = 0, the series is
covariance stationary and possesses a short memory
process, whereas in the case of d = 1, the series is
non-stationary. However, in the case of 0 < d < 0.5,
the series, even though covariance stationary, its
auto-covariance decays much more slowly than the
ARMA process. If d is 0.5 < d < 1, the series is no
longer covariance stationary, but still mean reverting
with the effect of a shock persist for a long period of
time, and in that case, the process is said to have a
long memory. Given a discrete time series, Vp with
autocorrelation function, Py atlagj, Mcleod and Hipel
(1978) define long memory as a process:

2l

J==n

n—> o 9)

characterized as non-finite. In the non-stationary
and in the long memory process, the shock e, at time
t, continues to influence the future y,,, for a longer
horizon, k, than would be the case for the standard
stationary ARMA process. While there are varieties
of ways to estimate the parameters of (3) and (4), in
this paper we employed the maximum likelihood
estimator.

600

EMPIRICAL RESULTS
Estimation of parameters

The analysis in this research is based on monthly
data for six food commodity prices, during the sample
period from October 1984 to September 2009. The
food commodities include wheat, rice, sugar, beef,
coffee, and groundnut. All price series were collected
from the Index Mundi website, which in turn was
extracted from the the IMF, Primary Commodity
Price Tables*. We employed the maximum likelihood
estimation method to estimate the parameters in
equations (2)—(5). The graphical exposition of price
changes (see the Figures 1-6) indicates the evidence
of volatility clustering, which is the phenomenon
that large changes in asset prices, in either sign, tend
to be followed by large changes, and small changes
are followed by small changes. Table 1 presents the
estimation results of the parameters in equation (3)
under both the normal and the ¢-distribution errors.
Results of GARCH(1,1) parameters show the evidence
of stationarity of the conditional volatility; whereas
the sample autocorrelation statistic indicated by the
squared values of Ljung-Box, Q(5) suggests that the
conditional homoskedasticity can be rejected for all
six commodities. Also the results of the LM statistics
for ARCH(5) errors confirm the significance of the
ARCH effects in the data. The log likelihood and the
information criteria test results overwhelmingly sup-
port the ¢-distribution specification of the innovations
in the AR(1) model in equation (1). This is consistent
with the existing literature on asset markets, which
indicates the evidences of the conditional leptokurtosis
in the high and medium frequency data analysis (Bai
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Figure 1. Groundnut price

change

3See Diebold and Rudebuch (1989); Cunado et al (2005); and Ding and Granger (1996) for a detailed discussion about
the importance of allowing for non-integer values of integration when modeling long-run dependence in the condi-

tional mean of time series data.
“http://www.indexmundi.com/
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Figure 2. Sugar price change
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Figure 3. Rice price change
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Figure 4. Coffee price change
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Figure 6. Wheat price change
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and Ng 2003). To investigate further the robustness
of the ¢-distribution model, we conducted, using
the out-of-sample forecast analysis, the predictive
power of the two models. Diebold and Mariano (1995)

Table 1. Estimation of parameters

(DM) test was employed to compare the accuracy of
forecast results. When comparing the forecasts from
two competing models; model A, and model B, an
important question that needs to be taken into account

Wheat Rice Beef

normal t-dist. normal t-dist. normal t-dist.
w 0.068 0.01 0.58 0.41 0.061 0.004
(p-value) (0.24) (0.05) (0.12) (0.00) (0.14) (0.03)
o 0.00 0.74 0.00 0.003 0.00 0.44
(p-value) (0.94) (0.00) (0.93) (0.67) (0.93) (0.00)
B 0.63 0.10 0.003 0.82 0.24 0.01
(p-value) (0.00) (0.01) (0.95) (0.00) (0.00) (0.79)
Q2 (5) 7.99 286 73.8 44.1 86 12.4
(p-value) (0.15) (0.00) (0.00) (0.00) (0.00) (0.03)
LM (5) 144* 6.83* 96.1* 33.2*% 88* 10.9*
Log-likelihood function 177 13 746 -798 12 586 461 13 509
AIC 0.18E-1 0.27E-41 13.12 0.69E-38 0.26E-2 0.13E-40
SC 0.19E-1 0.28E-41 13.62 0.72E-38 0.27E-2 0.14E-40
HQ 0.18E-1 0.27E-41 13.32 0.70E-38 0.26E-2 0.13E-40

Groundnut Sugar Coffee

normal t-dist. normal t-dist. normal t-dist.
w 0.00 0.01 0.068 0.005 0.16 0.04
(p-value) (0.94) (0.00) (0.00) (0.00) (0.20) (0.05)
o 0.28 0.00 0.12 0.00 0.00 0.18
(p-value) (0.24) (0.81) (0.22) (0.86) (0.94) (0.08)
B 0.59 0.25 0.16 0.17 0.38 0.02
(p-value) (0.02) (0.00) (0.01) (0.01) (0.00) (0.66)
Q2 (5) 103 76.6 15.72 15.42 94.1 99.2
(p-value) (0.00) (0.00) (0.01) (0.01) (0.00) (0.00
LM (5) 43.6* 40.62* 5.25* 6.32% 50.03* 110.5*
Log-likelihood function 844 12939 907 12912 -230 14530
AIC 0.19E-3 0.63E-39 0.13E-3 0.76E-39 0.28 0.13E-43
SC 0.20E-3 0.66E-39 0.14E-3 0.79E-39 0.29 0.14E-43
HQ 0.20E-3 0.64E-39 0.13E-3 0.77E-39 0.28 0.13E-43

Note: Estimated values of parameters rounded into two decimals; terms in parenthesis are p-values

*significant at 5% significance level
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Table 2. RMSE loss functions and Diebold & Mariano
test

RMSE loss functions

D&M
normal t-dist. statistic

Wheat 0.0068 0.005 19.19
p-value (0.00)
Rice 0.40 0.006 40.83
p-value (0.00)
Beef 0.0062 0.005 24.52
p-value (0.00)
Groundnut 0.0037 0.001 52.3
p-value (0.00)
Sugar 0.0071 0.0079 485
p-value (0.00)
Coffee 0.15 0.0037 12.81
p-value

*The loss functions are based on three days ahead fore-
cast errors

Under the null hypothesis of equal forecast accuracy,
DM is asymptotically normally distributed

is, whether the prediction of model A is significantly
more accurate, in terms of a loss function, than the
prediction of model B. The Diebold and Mariano
test aims to test the null hypothesis of the equality
of forecast accuracy against the alternative of the
different forecasts across models. Table 2 reports
the predictive power of the two models (the normal
distribution and the ¢-distribution innovations) us-
ing the Root Mean Squared Error (RMSE) of forecast
values of the conditional volatility.

Results in Table 3 report the FIGARCH(1, d, 1)
results, and indicate a strong evidence of the sta-
tionary short memory process for the four of the six
commodities, as only beef and coffee exhibit the long
memory behavior (covariance non-stationary, but
mean reverting). This result implies that for the food
commodities exhibiting the short memory process, a
shock is not likely to persist for a long period.

CONCLUDING REMARKS

The paper employs two competing models, including
the thin tailed the normal distribution and the fat-tailed
Student ¢-distribution models, to explore the volatility
in the global food commodity prices of wheat, rice, beef,
groundnut, sugar, and coffee. The sample period in the
study includes monthly data covering the period from
October 1984 to September 2009. Using the predictive
power of the volatility forecast and other goodness
of fit measures, the performance of each model was
assessed. The analysis in the paper indicates that the
t-distribution model outperforms the normal distri-
bution model, revealing the evidence of leptokurtosis
in the volatility of food commodity prices. This result
implies that if such leptokurtic behavior is not taken into
account when estimating the conditional volatility, the
standard option pricing formula of Black and Scholes,
which depends on the expected volatility parameter,
could lead into unreliable results when pricing the
future option contracts in the commodity markets.
The paper also shows that the volatility of the future

Table 3. FIGARCH (1,d,1): ¢-distribution and normal distribution

Parameters Wheat Rice Beef Groundnut Sugar Coffee
t-distribution

d, 0.48 0.44 0.57* 0.42 0.47 0.56*
(standard error) (8.04) (7.2) (10.2) (6.0) (6.6) (10.1)
¢, -0.49 ~0.45 ~0.58 -0.17 -0.16 ~0.58
(standard error) (-=7.6) (=7.01) (-10.3) (-2.1) (-1.92) (-10.4)
él 0.01 0.01 0.4 0.01 0.02 0.01
(standard error) (0.01) (0.002) (0.01) (0.01) (0.01) (0.01)
Log-likelihood function 201 -676 475 837 886 -205
Normal distribution

621 0.75* 0.55* 0.59* 0.41 0.48 0.63*
(standard error) (8.6) (9.9) (9.4) (5.01) (7.1) (11.87)
o -0.39 -0.59 ~0.44 -0.05 -0.19 ~0.44
(standard error) (—4.36) (-10.4) (-6.3) (-0.58) (-2.44 (=7.7)
él 0.82 9.7 -14.0 8.28 -6.2 52.5
(standard error) (0.62) (0.47) (-1.79) (0.59) (-2.25) (8.47)
Log-likelihood function 97.1 —683 438 850 884 -152

*mean reverting, but long memory process
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commodity prices is mean reverting, and exhibits the
short memory behavior for all commodities, except for
beef and coffee which showan intermediate memory
behavior. The short term persistence impliesthat the
effect of shocks on the future conditional variance
persist only for short periods.
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