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Consensus relevant information should constitute 
an important guide in combining or aggregating the 
decisions of multiple experts or expert systems. This 

information provide a clearer picture about the dif-
ferences and similarities among the decisions made 
by the multiple experts, and that can help on either 

Approaches to assess the group consensus in Yes-or-No 
type experts’ group decision making

Přístupy k hodnocení skupinové shody v binárním Ano/Ne 
expertním skupinovém rozhodování

Shady ALY, Ivan VRANA

Department of Information Engineering, Faculty of Economics and Management, 
Czech University of Life Sciences, Prague, Czech Republic

Abstract: Group consensus indicators provide an important insight and information about how to combine a group of 
expert judgments. This paper is concerned with the development of a set of indicators to be used in analyzing the group 
consensus in evaluating Yes-or-No type’s decision problems. The opinions of the experts are in the form of a real num-
ber between 0 and 10 expressing the degree of answers Yes or No (0 for sharp No and 10 for sharp Yes). Two methods for 
obtaining the consensus indicators are developed. The first of them is based on configuring the one previously developed 
by (Ngwenyama et al. 1996), which is reviewed in this paper. The other one is an improved one that does not rely on the 
existence of the known or desired similarity significance levels or thresholds.  A new measure of consensus is introduced, 
the standard deviation. An experiment is conducted to get acquainted with the relationship between the standard deviation 
of group decisions and one of the developed group consensus indicators, which measures the agreement level within the 
group of decisions. This research is intended to develop more consistent indicators and measures group consensus and 
position of each individual relative to others for Yes-or-No type group decisions. This is aimed at the exploitation of such 
important and relevant consensus information for developing a new consensus-based heuristic algorithm to combine the 
multiple experts’ judgments or to be able to select the adequate combining criteria. Finally, the presented approach could 
be usefully utilized in critical “Yes – or – No” GDM problems in business and industry.
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Abstrakt: Indikátory skupinové shody poskytují důležitý vhled a informaci o hodnocení skupinou expertů. Článek se zajímá 
o vývoj sady indikátorů, které by se daly použít pro analýzu skupinové shody při rozhodovacích problémech s hodnocením 
Ano/Ne. Názory expertů ve tvaru reálných čísel v rozsahu 0–10 vyjadřují stupeň odpovědí Ano a Ne (0 znamená určitě Ne, 
10 znamená určitě Ano). Byly vytvořeny 2 metody pro získání indikátorů shody. První metoda, jejíž přehled článek uvádí, je 
založena na konfiguraci původní metody Ngwenyamy. Druhá, zlepšená metoda, odstranila závislost na existenci známých 
nebo žádoucích prahů nebo úrovní podobnosti. Jako nová míra shody je zavedena směrodatná odchylka. Byl proveden 
experiment pro posouzení souvislosti mezi směrodatnou odchylkou skupinového rozhodování a jedním z indikátorů shody, 
který měří stupeň souladu v rámci skupiny rozhodnutí. Účelem tohoto výzkumu bylo vyvinout konzistentnější indikátory 
a míry skupinové shody a porovnání každého jednotlivého experta s ostatními ve skupině. Smyslem je též využití důležité 
informace o shodě pro vytvoření nového, na shodě založeného heuristického algoritmu, který by dal dohromady hodnocení 
více expertů tak, aby bylo možné vybrat vhodná agregační kritéria. 
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developing a decision making procedure based on 
the evaluation of such information or developing a 
method that can be used in the selection of adequate 
decision combination or aggregation criteria. The 
main intention of such analysis is to improve the 
decision quality of the finally reached consolidated 
decision.

The primary focus of this paper involves the situ-
ation in which a group of experts is cooperatively 
evaluating a Yes-or-No type decision making problem, 
in which each expert provides his/her decision about 
whether the answer is Yes or No. The decision of 
each expert is in the form of a crisp numerical value 
within the range from 0 to 10, a scale corresponding 
to the degree of decisiveness of Yes and No decision 
answers, where the value 0 means sharp degree of 
“No”, and the value 10 means a sharp degree of “Yes”. 
Intermediate values reflect the degree of bias to either 
decision answers, and of course the value 5 represents 
an overlap between the two classes of decision, and 
means no bias. Then, given such multiple experts’ 
decisions, we are interested in assessing the level of 
group consensus. This is through determining the 
level of group agreement, and identifying which in-
dividual decision has the highest level of agreement 
with other group members, and which one can be 
considered as a problematic decision or outlier.

Consensus is one major topic in the group decision 
making (GDM) (Shih et al. 2004). Analyzing consensus 
has drawn a considerable attention in the past; for 
instance see (Fedrizzi and Kacprzyk 1988; Cook and 
Seiford 1978). Bryson in 1996 (Bryson 1996), con-
sidered the GDM problem in which every decision 
maker provides his/her opinion about a given set of 
decision alternatives or objects utilizing the analyti-
cal hierarchy process (AHP) (Saaty 1989) to obtain 
a preference vector or weight vector containing the 
weights of AHP ranking. Given such preference or 
weight vector of each decision maker, Bryson proposed 
a framework for assessing the current level of group 
consensus, and described a decision procedure for 
the consensus building. In 1996, he and together with 
Ngwenyama et al. (Ngwenyama et al. 1996) proposed 
three indicators related to the level of agreement, 
and another three individual indicators related to 
the measure of the position of each individual to 
the group. In 2004, Shih et al. proposed geometric 
distance-measure based consensus indicators.

In this paper, we review the approach developed by 
Ngwenyama et al. to measure the group consensus. 
Then, we reconfigure such approach to the situation 
of the binary decision problem; that is of the Yes-or-
No type. The binary preference vector is defined, and 
accordingly the adequate values of agreement and 

disagreement significance levels are set. We argue 
that the difficulty of identifying reasonable value of 
significance levels remains an obstacle to the consist-
ent and reliable implementation of such procedure. 
Consequently, we propose another improved ver-
sion that is independent of the value of significance 
levels. The advantages offered by the new developed 
set are described. Finally, the standard deviation, as 
a measure of dispersion among a group of numeri-
cal values, is introduced as a new added measure 
of group consensus, which can be utilized too. The 
mathematical relationship between the standard 
deviation of numerical judgments and their group 
agreement level is studied. 

PREVIOUSLY DEVELOPED APPROACH

Ngwenyama et al. in 1996 described an approach 
to assess the group consensus given a set of prefer-
ence vectors of each decision maker belonging to 
the group. This preference vector can be in form of 
scores, ranks or weights of multiple decision options 
or alternatives. The preference vector: Vi

 = (w1, w2, 
..., wn), denotes the vector of the ith group member or 
decision makers, out of g members belonging to the 
decision making group G, and assessing the rank of 
n alternatives; i є <1, g>. For instance, such weights 
can be obtained via the application of the AHP. For 
example, in evaluation of the submitted papers for 
publishing in a journal, each decision maker (reviewer) 
has 3 decision alternatives: to accept paper without 
changes, to accept after minor changes, to reject. 
Consequently, the preference vector here consists 
of three components; the ranks or weights of every 
decision option. 

Ngwenyama has proposed six indicators:
(1) Group Strong Agreement Quotient (GSAQ): 

measures the level of agreement in the decisions 
made by the group members.

(2) Group Strong Disagreement Quotient (GSDQ): 
measures the level of disagreement in the deci-
sions made by the group members.

(3) Group Strongest Disagreement Indicator 
(GSDI): measures the breadth of decision opin-
ions in the group.

(4) Individual Strong Agreement Quotient (ISAQ): 
measures for each individual’s decision how much 
it is in concordance with other members’ deci-
sions. 

(5) Individual Strong Disagreement Quotient 
(ISDQ): measures for each individual’s decision 
how much it is in dis-concordance with other 
members’ decisions.
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(6) Individual Strongest Disagreement Indicator 
(ISDI): gives the ultimate disagreement of the 
individual’s decision with any one of the other 
members’ decisions. It helps to identify which 
individual has the greatest disagreement with 
other group members.

The first three indictors identify the agreement, 
disagreement, and breadth of opinions characteris-
tics of the group. The last three indicators give the 
estimates of the position of each individual’s decision 
relative to the other group decisions. The computa-
tion of these indicators is reviewed below. 

Ngwenyama et al. used the cosine of the angle be-
tween two vectors to express the similarity between 
any two preference vectors. A vector consists of one 
or more components and takes the following form: 
V = (x1, x2, …, xn). For our decision making problem, 
the vector components can be scores, ratings, or 
weights in form of real numbers assigned by an expert 
to the decision alternatives. In a decision making 
problem, where there are three decision alternatives 
to evaluate, we require a preference vector of three 
components.

As the cosine of the angle between two vectors 
increases, the similarity or agreement between them 
increases. Then, the similarity between two preference 
vectors k, l is mathematically formulated as:
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where:
lk VV   	= the scalar product of vectors Vk and V1

kV  	 = the magnitude of the ith vector

If Simk ,l = 1, then the two vectors have the same 
direction, which corresponds to the angle θ = 0°. If 
Simk, l = 0, then the two vectors are said to be com-
pletely dissimilar, it corresponds to θ = 90°, which is 
the largest possible angle between two vectors. As 
an example, suppose that there are two experts who 
are evaluating three alternatives through assigning 
their preferences in the form of weights within [0, 
1]. Suppose that their preference vectors were as 
follows:
V1= (0.7, 0.05, 0.25) 
V2= (0.8, 0.1, 0.1)

Then the similarity value is computed as follows:
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In addition, Ngwenyama et al. specified two thresh-
olds for strong agreement and disagreement, α, δ 

respectively. Then, the group members are said to 
have strong agreement or similarity if Simk, l  ≥ α, and 
are said to have strong disagreement or dissimilarity 
if Simk,  ≤ δ. The six indicators were mathematically 
formulated as follows:
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where: 
g = the total number of members (decision markers) in  
      the group G

(2) GSDQδ:
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It should be noted that the chosen values for sig-
nificance levels α, δ, influentially determine the val-
ues of 4 indicators: GSAQ, GSDQ, ISAQ and ISDQ. 
Ngwenyama has suggested two possible values for α 
and δ; 0.985 for α, which corresponds to the cosine 
of 10°, and surprisingly 0.966 for δ, which corre-
sponds to the cosine of 15°. Unfortunately, there is 
no clear rule to help in setting the values for α, δ, 
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or to describe the relation between these values and 
the indicators’ values. Moreover, the threshold δ is 
set un-logically very high, without any justification. 
This are considered limitations of the Ngwenyama’s 
approach.

BINARY PREFERENCE VECTOR

In order to reconfigure the Ngwenyama’s consensus 
indicators for the binary decision making problem, 
first we need to define the adequate form of the pref-
erence vector. There are only two decision options or 
alternatives: either Yes or No. As we have said before, 
independently of the method or approach used, all 
decision makers or group members should provide a 
crisp numerical values within the range 0 to 10 that 
expresses the degree of their bias either toward Yes 
or No decision answers. The value of 10 corresponds 
to sharp Yes, and value of 0 corresponds to sharp No. 
These numerical values could be obtained using the 
AHP, expert systems, or single judgments by experts 
or decision makers. Here is not our object of concern 
how these values are obtained, but how to measure 
the consensus of a group of binary preference vec-
tors composed of real-valued components. A binary 
preference vector consists of two scores or any other 
numerical values that express the ranks of two decision 
alternatives. For instance, if the ith decision maker as-
signs 8 for Yes decision option; it means that he/she 
assigns 2 for No. Then, the ith preference vector, Vi, 
is Vi = (8, 2). Mathematically, the decision made by 
every ith member, which belongs to the decision mak-
ing group G, is represented by the preference vector 
Vi =(xi

1, xi
2), xi

2 = 1 – xi
1, where:

Vi 	 = preference vector of the ith group’s member
xi

1	= score, rank, or priority of Yes decision option
xi

2	= score, rank, or priority of No decision option

Remark: In order to further preserve the possibility 
of using similarity measures between vectors, we keep 
using the vector notation in spite of the fact that the 
binary preference vectors have only one independent 
component. 

GROUP AND INDIVIDUAL INDICATORS TO 
ASSESS CONSENSUS IN THE BINARY GDM

In order to define the six consensus indicators for 
a group of binary preference vectors, it is important 
to look carefully over the inherent feature of such 
type of the vector, and the used meaningful numerical 

scale. Ngwenyama et al. defined two thresholds of 
agreement and disagreement α, δ described previ-
ously.  For the binary group decision problem, in 
order to assign meaningful values for the similarity 
and dissimilarity significance thresholds, it is nec-
essary to grasp the nature of the scale used. Every 
group member provides a numerical value within the 
range [0, 10]. Values above the middle 5 express bias 
toward Yes option, whereas values below 5 express 
bias toward the No answer. Exact 5 value means that 
the decision cannot be attributed neither to Yes or 
No; it is an overlapped, non-biased decision. Here, 
a special attention should be made that the exist-
ence of the middle value, 5, is not an indication of 
the third decision option, but it merely expresses 
the overlap between the Yes and No decision, as in 
all other binary classification techniques which use 
a similar range of numerical values to express the 
degree of each class or decision. 

In order to describe how to set the threshold lev-
els of agreement and disagreement, let us explain it 
through examples. According to our used meaningful 
scale, if two numbers lay both above 5 or if they lay 
both below 5, they are referring to same decision 
direction; that is they are similar. For instance, the 
numerical values: 6&7, 7&8, 9&10, 2&4, 3&2, 0&1, 
… etc, are considered relatively similar pairs; and 
the numerical values: 2&6, 3&9, 10&0, 8&4, … etc, 
are considered relatively dissimilar pairs, since the 
two pair’s values lie always in a different decision 
direction. The value 5 is common between the two 
decision directions, that is, it can be similar for any 
close values to it regardless of their directions.

The cosine of angle will be used to compute the 
similarity value between any two preference vectors, 
except for the case when there is a disparity in the 
decision directions between the corresponding two 
numerical independent components. The cosine of 
angle in this case will be divided by 2 (i.e., half-dis-
counted) to reflect the difference in the two decision 
directions, “Yes” and “No”. 

Generally, setting the values of α and δ depends on 
the analyst’s vision about which value of similarity can 
be considered the threshold of strong agreement or 
disagreement. Increasing values of α and δ restricts 
the assessment process to stronger threshold levels, 
which assign more similarities to the disagreement 
classification. This increases the confidence about 
the estimated indicators, but can lead to a non-rep-
resentative assessment of consensus due to the loss 
of information or miss-classification, when the simi-
larity should be viewed at less strict level. On the 
other hand, decreasing both values leads to a loss in 
classifying similarities into agreement or disagree-
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ment categories. More similarities are classified into 
strong agreement, and less similarities values are 
classified into the strong disagreement level. With a 
high amount of difference between α and δ, it leads 
to some similarities which are neither classified as 
agreement nor disagreement, and this of course leads 
to the information loss, since the indicators values are 
unable in this case to convey any information about 
these unclassified similarities in the group decisions. 
So, first we recommend that the better way to set 
the values of α and δ is to adhere to the adequate 
view of the analyst, when the similarity between 
two numerical judgments can be considered as a 
threshold of agreement or disagreement. Second, it 
is preferred to have only a single threshold value, say 
α, which is used to indicate, whether the similarities 
are agreement or disagreement, and without having 
unclassified values. 

NEWLY DEVELOPED CONSENSUS LEVEL 
INDICATORS

We are concerned with developing the six consensus 
indicators independent of the significance threshold 
values. In the previous approach, that was based on 
Ngwenyama et al, previous work, 4 out of 6 indictors 
depend on the values of strong threshold of agreement 
and disagreement, or in other meaning of the signifi-
cance levels. The problem here is which values of α, δ 
are considered optimum in the sense that they closely 
mirror the consensus level group’s judgment values 
into a representative and consistent indicators values. 
The determination of the threshold values remain a 
vague issue, since it is difficult to assess the effect of 
restricting or loosening these values on the obtained 
consensus indicators’ values. This holds, unless there 
was a considerable experimentation conducted in order 
to optimize these values. However, setting these values 
should be based on the designer’s or analyst’s opinion 
about which value is considered as a threshold for 
strong agreement or disagreement, and this also can 
sometimes be considered a non-exact issue. In order to 
avoid the inherent vagueness about the values of these 
thresholds, and in order to be independent from such 
values, we propose other six consensus indicators that 
do not require specifying values of significance levels. 
We redefine new sets of indictors and mathematically 
formulate them as follows:
(1) GASI (Group Average Similarity Indicator):

It expresses the average similarity of all pairs of 
group members. It measures the level of agreement 
or similarity in the group. As this indicator value 
reaches 1; this means a complete agreement, and 

as it reaches 0, it means a complete disagreement. 
As the value of GASI increases over 0.5; this means 
that the agreement level within the group decisions 
is higher than the disagreement level in them. GASI 
is mathematically expressed as follows:
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where: g = the total number of members in the group G

(2) GADI (Group Average Dissimilarity Indicator):
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where: g = the total number of members in the group G

Or simply, GADI = 1 – GASI
is the average dissimilarity of all pairs of group 

members. It measures the level of disagreement in 
the group.

(3) GMDI (Group Maximum Dissimilarity Indicator):
Same like eq. (4), it has not changed, since it does 

not depend on the value of thresholds. We have given 
it a more vivid name. It measures the breadth of 
opinions in the group. 
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(4) IASIi (Individual Average Similarity Indicator): 
It measures the average amount of agreement, every 

ith individual bears with other group members.
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The individual who has highest value of IASIi is 
said to have the maximum agreement with other 
group members, IASImax. It has been found that this 
group member always is the median in the case of 
odd group members’ number.

(5) IADIi (Individual Average Dissimilarity 
Indicator): 

It measures the average amount of disagreement, 
every ith individual bears with other group members.
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Or simply, IADIi =1 – IASIi 

(6) IMDIi (Individual Maximum Dissimilarity In-
dicator):

This indicator is same like in eq. (7), it has not 
changed, since it does not depend on the value of 
thresholds. We have given it a more vivid name. It 
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helps to identify, which individual decision has an 
ultimate disagreement with other group’s members’ 
decisions. 
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Based on the definition of the proposed modified 
indicators, it holds that the value of IASImax is always 
greater than the value of GASI.

It should be noted that the above introduced new set 
of indicators, which do not require the specification 
of thresholds for agreement or disagreement, provides 
a relief from the previously mentioned vagueness of 
Ngwenyama’s indicators. In addition, this new set 
takes account of all values of similarity, not only the 
count of it, as it was previously.

A new measure of consensus: 
the standard deviation

We introduce the standard deviation as another 
measure of consensus based on statistical character-
istics of the incoming experts’ numerical judgments, 
which measures the amount of dispersion from the 
centre of group of numerical values. As it was de-
fined for a group of experts’ numerical judgments, 
the formula is as follows:
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where:
xi 	= the ith expert’s numerical judgement, i = 1, 2, ..., g 
x  	= the arithmetic mean of the expert’s judgement
g 	 = the total number of experts in the judging group

The standard deviation as a measure of disper-
sion provides new information about the consensus 
level of the group. It differs from GASI in that GASI 
quantifies the average of the total pair-wise simi-
larity of the group, whereas the standard deviation 
measures the dispersion from the centre or mean 
of the group. In order to become acquainted with 
the nature of relation between both measures, an 
experiment was conducted to understand the rela-
tion between GASI and σ. Because of the lack of 
the actual real data, this experiment was conducted 
on random sets of data. Nine data sets were cre-
ated, each of which contains a different number of 
experts participating in judging the binary deci-
sion making problem utilizing the same numerical 
judgmental scale that we referred to previously. 
Thirty tests –judgment problems (30 points) were 

created uniformly randomly for each set. For each 
set, in every point there is computed both standard 
deviation and GASI. Then the values of GASI were 
plotted versus those of σ in scatter graphs (see 
Figures 1. through 9). In order to get more insight 
about the nature of the relationship between both 
measures, the regression analysis was used to fit 
the relationship. The polynomial regression was 
proved to be the most fitting function amongst all 
experimented ones: Linear, Logarithmic, Power, 
Polynomial Regression, and Exponential, according 
to its attributed highest correlation coefficient values 
for the whole number of experts. The polynomial 
regression equations are attached to every figure. 
It is noticed that the relationships throughout all 
experts’ numbers exhibit an inverse proportional-
ity, as was logically expected, and a small amount 
of non-linearities detected by small coefficients’ 
magnitudes in the non-linear term in the polyno-
mial regression function. The main intention of this 
experiment was to comprehend the relationships 
between the two variables for the purpose of dis-
covering or mining the more embedded informa-
tion within the numerical judgments group to be 
able to exploit it in either reaching the consensus 
or helping to select the suitable combining crite-
ria or algorithm to be used in reaching the finally 
consolidated decision.

After describing the relationship between the de-
veloped GASI indicator and the standard deviation, 
it should be noted that these new indicators can be 
utilized by the researchers in further development 
of new indicators and in developing the new group 
technique or combining criteria. For the moment, 
the result of this relationship may not be exploited, 
but in future it could represent additional informa-
tion used in the group consensus analysis.

Figure 1. Relationship between GASI and σ on 2 experts’ 
problems
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Figure 2. Relationship between GASI and σ on 3 experts’ 
problems
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Figure 3. Relationship between GASI and σ on 4 experts’ 
problems
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Figure 4. Relationship between GASI and σ on 5 experts’ 
problems
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Figure 5. Relationship between GASI and σ on 6 experts’ 
problems
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Figure 6. Relationship between GASI and σ on 7 experts’ 
problems

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

 Polynomial (GASI-σ)

G
A

SI

σ

y = 0.013x2 – 0.0549x + 1.0402
R2 = 0.9855

Figure 7. Relationship between GASI and σ on 8 experts’ 
problems
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Figure 8. Relationship between GASI and σ on 9 experts’ 
problems
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Figure 9. Relationship between GASI and σ on 10 experts’ 
problems
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CONCLUSION

The main purpose of this research is to present a 
detailed consensus-based GDM approach to handle 
the complex and critical binary or “two-alterna-
tive” decision making problems confronted within 
business and engineering applications situations. 
This is done through reconfiguring the previously 
developed Ngwenyama et al.’s consensus indicators 
for the binary decision making problem. We have 
shown how we can measure the similarity between 
any two experts’ numerical decisions according to the 
suggested numerical scale that represents the decisive 
degree of Yes or No decision answers. Also, we have 
provided for contradictory numerical judgments, and 
used half-discounting to express this disparity. The 
consensus indicators were then reconfigured based 
on the estimated adequate thresholds of agreement 
and disagreement. We argued that the dependency 
on the two thresholds introduces some vagueness 
to computations of indicators, and suggested gener-
ally how the values of the two thresholds should be 
selected, which was not included in Ngwenyama. 
Further, we have developed a new set of indicators 
that do not require the specification of significance 
levels or thresholds. Four of the original indicators, 
which were depending on threshold values, were 
changed. These new sets of indicators are based on 
the average, and provide more information than the 
previously developed ones in the sense that they take 
into account the magnitude of similarity, not only 
the counts of similar decisions satisfying thresholds 
as it was previously. Moreover, it is considered more 
compact information in the sense that four out of the 
six indicators can be expressed only in terms of two, 
the GSAQ and ISAQ. Finally, we have introduced a 
new and simple measure of group decision similarity; 

the standard deviation. The relationship between the 
newly developed indicator GASI and the standard 
deviation was addressed using the regression analysis 
technique. The polynomial regression best fitted the 
relationship which has a logically inverse propor-
tionality between the two variables. These consensus 
indicators and measure of dispersion can be used in 
future researches to either help selecting the adequate 
combing criteria or developing new heuristics based 
on consensus to combine the experts’ judgments.
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