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Abstract: Group consensus indicators provide an important insight and information about how to combine a group of
expert judgments. This paper is concerned with the development of a set of indicators to be used in analyzing the group
consensus in evaluating Yes-or-No type’s decision problems. The opinions of the experts are in the form of a real num-
ber between 0 and 10 expressing the degree of answers Yes or No (0 for sharp No and 10 for sharp Yes). Two methods for
obtaining the consensus indicators are developed. The first of them is based on configuring the one previously developed
by (Ngwenyama et al. 1996), which is reviewed in this paper. The other one is an improved one that does not rely on the
existence of the known or desired similarity significance levels or thresholds. A new measure of consensus is introduced,
the standard deviation. An experiment is conducted to get acquainted with the relationship between the standard deviation
of group decisions and one of the developed group consensus indicators, which measures the agreement level within the
group of decisions. This research is intended to develop more consistent indicators and measures group consensus and
position of each individual relative to others for Yes-or-No type group decisions. This is aimed at the exploitation of such
important and relevant consensus information for developing a new consensus-based heuristic algorithm to combine the
multiple experts’ judgments or to be able to select the adequate combining criteria. Finally, the presented approach could
be usefully utilized in critical “Yes — or — No” GDM problems in business and industry.
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Abstrakt: Indikatory skupinové shody poskytuji diilezity vhled a informaci o hodnoceni skupinou expertii. Clanek se zajima
o vyvoj sady indikétord, které by se daly pouzit pro analyzu skupinové shody pti rozhodovacich problémech s hodnocenim
Ano/Ne. Ndzory experti ve tvaru redlnych ¢isel v rozsahu 0-10 vyjadiuji stuperi odpovédi Ano a Ne (0 znamend urcité Ne,
10 znamena urcité Ano). Byly vytvoreny 2 metody pro ziskani indikatord shody. Prvni metoda, jejiz prehled clanek uvadi, je
zalozena na konfiguraci ptivodni metody Ngwenyamy. Druh4, zlepsend metoda, odstranila zavislost na existenci zndmych
nebo Zadoucich prahti nebo trovni podobnosti. Jako novd mira shody je zavedena smérodatnd odchylka. Byl proveden
experiment pro posouzeni souvislosti mezi smérodatnou odchylkou skupinového rozhodovani a jednim z indikétort shody,
ktery méfi stupen souladu v ramci skupiny rozhodnuti. Ué¢elem tohoto vyzkumu bylo vyvinout konzistentnéjsi indikatory
a miry skupinové shody a porovnani kazdého jednotlivého experta s ostatnimi ve skupiné. Smyslem je téz vyuziti dalezité
informace o shodé pro vytvoreni nového, na shodé zalozeného heuristického algoritmu, ktery by dal dohromady hodnoceni

vice expertt tak, aby bylo mozné vybrat vhodna agregaé¢ni kritéria.

Klicova slova: skupinové rozhodovani, analyza shody, binarni rozhodovéni

Consensus relevant information should constitute  information provide a clearer picture about the dif-
an important guide in combining or aggregating the  ferences and similarities among the decisions made
decisions of multiple experts or expert systems. This by the multiple experts, and that can help on either
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developing a decision making procedure based on
the evaluation of such information or developing a
method that can be used in the selection of adequate
decision combination or aggregation criteria. The
main intention of such analysis is to improve the
decision quality of the finally reached consolidated
decision.

The primary focus of this paper involves the situ-
ation in which a group of experts is cooperatively
evaluating a Yes-or-No type decision making problem,
in which each expert provides his/her decision about
whether the answer is Yes or No. The decision of
each expert is in the form of a crisp numerical value
within the range from 0 to 10, a scale corresponding
to the degree of decisiveness of Yes and No decision
answers, where the value 0 means sharp degree of
“No’ and the value 10 means a sharp degree of “Yes”.
Intermediate values reflect the degree of bias to either
decision answers, and of course the value 5 represents
an overlap between the two classes of decision, and
means no bias. Then, given such multiple experts’
decisions, we are interested in assessing the level of
group consensus. This is through determining the
level of group agreement, and identifying which in-
dividual decision has the highest level of agreement
with other group members, and which one can be
considered as a problematic decision or outlier.

Consensus is one major topic in the group decision
making (GDM) (Shih et al. 2004). Analyzing consensus
has drawn a considerable attention in the past; for
instance see (Fedrizzi and Kacprzyk 1988; Cook and
Seiford 1978). Bryson in 1996 (Bryson 1996), con-
sidered the GDM problem in which every decision
maker provides his/her opinion about a given set of
decision alternatives or objects utilizing the analyti-
cal hierarchy process (AHP) (Saaty 1989) to obtain
a preference vector or weight vector containing the
weights of AHP ranking. Given such preference or
weight vector of each decision maker, Bryson proposed
a framework for assessing the current level of group
consensus, and described a decision procedure for
the consensus building. In 1996, he and together with
Ngwenyama et al. (Ngwenyama et al. 1996) proposed
three indicators related to the level of agreement,
and another three individual indicators related to
the measure of the position of each individual to
the group. In 2004, Shih et al. proposed geometric
distance-measure based consensus indicators.

In this paper, we review the approach developed by
Ngwenyama et al. to measure the group consensus.
Then, we reconfigure such approach to the situation
of the binary decision problem; that is of the Yes-or-
No type. The binary preference vector is defined, and
accordingly the adequate values of agreement and
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disagreement significance levels are set. We argue
that the difficulty of identifying reasonable value of
significance levels remains an obstacle to the consist-
ent and reliable implementation of such procedure.
Consequently, we propose another improved ver-
sion that is independent of the value of significance
levels. The advantages offered by the new developed
set are described. Finally, the standard deviation, as
a measure of dispersion among a group of numeri-
cal values, is introduced as a new added measure
of group consensus, which can be utilized too. The
mathematical relationship between the standard
deviation of numerical judgments and their group
agreement level is studied.

PREVIOUSLY DEVELOPED APPROACH

Ngwenyama et al. in 1996 described an approach
to assess the group consensus given a set of prefer-
ence vectors of each decision maker belonging to
the group. This preference vector can be in form of
scores, ranks or weights of multiple decision options
or alternatives. The preference vector: V' = (wy, w,,
s wn), denotes the vector of the ith group member or
decision makers, out of g members belonging to the
decision making group G, and assessing the rank of
n alternatives; i € <1, g>. For instance, such weights
can be obtained via the application of the AHP. For
example, in evaluation of the submitted papers for
publishing in a journal, each decision maker (reviewer)
has 3 decision alternatives: to accept paper without
changes, to accept after minor changes, to reject.
Consequently, the preference vector here consists
of three components; the ranks or weights of every
decision option.

Ngwenyama has proposed six indicators:

(1) Group Strong Agreement Quotient (GSAQ):
measures the level of agreement in the decisions
made by the group members.

(2) Group Strong Disagreement Quotient (GSDQ):
measures the level of disagreement in the deci-
sions made by the group members.

(3) Group Strongest Disagreement Indicator
(GSDI): measures the breadth of decision opin-
ions in the group.

(4) Individual Strong Agreement Quotient (ISAQ):
measures for each individual’s decision how much
it is in concordance with other members’ deci-
sions.

(5) Individual Strong Disagreement Quotient
(ISDQ): measures for each individual’s decision
how much it is in dis-concordance with other
members’ decisions.
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(6) Individual Strongest Disagreement Indicator
(ISDI): gives the ultimate disagreement of the
individual’s decision with any one of the other
members’ decisions. It helps to identify which
individual has the greatest disagreement with
other group members.

The first three indictors identify the agreement,
disagreement, and breadth of opinions characteris-
tics of the group. The last three indicators give the
estimates of the position of each individual’s decision
relative to the other group decisions. The computa-
tion of these indicators is reviewed below.

Ngwenyama et al. used the cosine of the angle be-
tween two vectors to express the similarity between
any two preference vectors. A vector consists of one
or more components and takes the following form:
V=(x,, Ky oo xn). For our decision making problem,
the vector components can be scores, ratings, or
weights in form of real numbers assigned by an expert
to the decision alternatives. In a decision making
problem, where there are three decision alternatives
to evaluate, we require a preference vector of three
components.

As the cosine of the angle between two vectors
increases, the similarity or agreement between them
increases. Then, the similarity between two preference
vectors k, | is mathematically formulated as:

vkey!

I

Sim"*! =
o

(1)

where:

v eV!  the scalar product of vectors VX and V1
a

= the magnitude of the it" vector

If SimX-! = 1, then the two vectors have the same
direction, which corresponds to the angle 6 = 0°. If
Simk ! = 0, then the two vectors are said to be com-
pletely dissimilar, it corresponds to 8 = 90°, which is
the largest possible angle between two vectors. As
an example, suppose that there are two experts who
are evaluating three alternatives through assigning
their preferences in the form of weights within [0,
1]. Suppose that their preference vectors were as
follows:

V1= (0.7, 0.05, 0.25)
V2= (0.8, 0.1, 0.1)
Then the similarity value is computed as follows:

Gl = (0.7%0.8)+(0.05x0.1)+(0.25x0.1)

- ~0.975
(+0.72 +0.05% +0.25% ) x (V0.8 +0.12 +0.12)

In addition, Ngwenyama et al. specified two thresh-
olds for strong agreement and disagreement, o, §
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respectively. Then, the group members are said to
have strong agreement or similarity if Sim*/ > o, and
are said to have strong disagreement or dissimilarity
if Sim* < §. The six indicators were mathematically
formulated as follows:

(1) GSAQ,:
gl g

GSAQ, =" Y 2xT( j) /g(g—l) 2)
i=1 j=i+]

1 ifSim” >a

0  otherwise

I(@j) = {

where:
g = the total number of members (decision markers) in
the group G

(2) GSDQ:

g-l g
GSDQ; = 2 22@(1‘,]‘) /g(g—l) (3)

i=l j=i+l
.. 1
O, j) = { 0

(3) GSDI:

GSDI= Min {Sim%
Min fsim” @
I#]

if Sim*/ < §

otherwise

(4) ISAQ' :

. g
ISAQ, = D T(.)) /g—l) (5)

j=lj#i

1
I /) =
) {0

(5) ISDQ’;:

g
ISDQ/, = zqm‘, /) /(g—l) (6)

j=1j#i

if Sim"/ >«

otherwise

1 if Sim"/ <§
0  otherwise

(i, j) ={

(6) ISDI:

P g Y
ISDI' = 1\@21@{81m } (7)
J#i

It should be noted that the chosen values for sig-
nificance levels «, §, influentially determine the val-
ues of 4 indicators: GSAQ, GSDQ, ISAQ and ISDQ.
Ngwenyama has suggested two possible values for «
and §; 0.985 for a, which corresponds to the cosine
of 10°, and surprisingly 0.966 for §, which corre-
sponds to the cosine of 15°. Unfortunately, there is
no clear rule to help in setting the values for «, 9§,
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or to describe the relation between these values and
the indicators’ values. Moreover, the threshold § is
set un-logically very high, without any justification.
This are considered limitations of the Ngwenyama'’s
approach.

BINARY PREFERENCE VECTOR

In order to reconfigure the Ngwenyama’s consensus
indicators for the binary decision making problem,
first we need to define the adequate form of the pref-
erence vector. There are only two decision options or
alternatives: either Yes or No. As we have said before,
independently of the method or approach used, all
decision makers or group members should provide a
crisp numerical values within the range 0 to 10 that
expresses the degree of their bias either toward Yes
or No decision answers. The value of 10 corresponds
to sharp Yes, and value of O corresponds to sharp No.
These numerical values could be obtained using the
AHDP, expert systems, or single judgments by experts
or decision makers. Here is not our object of concern
how these values are obtained, but how to measure
the consensus of a group of binary preference vec-
tors composed of real-valued components. A binary
preference vector consists of two scores or any other
numerical values that express the ranks of two decision
alternatives. For instance, if the i decision maker as-
signs 8 for Yes decision option; it means that he/she
assigns 2 for No. Then, the jth preference vector, V%,
is Vi= (8, 2). Mathematically, the decision made by
every i member, which belongs to the decision mak-
ing group G, is represented by the preference vector

Vi=(x, xl,), ¥, = 1 - x', where:

1
Vi = preference vector of the ih group’s member

xi1 = score, rank, or priority of Yes decision option
xiz = score, rank, or priority of No decision option

Remark: In order to further preserve the possibility
of using similarity measures between vectors, we keep
using the vector notation in spite of the fact that the
binary preference vectors have only one independent
component.

GROUP AND INDIVIDUAL INDICATORS TO
ASSESS CONSENSUS IN THE BINARY GDM

In order to define the six consensus indicators for
a group of binary preference vectors, it is important
to look carefully over the inherent feature of such
type of the vector, and the used meaningful numerical
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scale. Ngwenyama et al. defined two thresholds of
agreement and disagreement a, § described previ-
ously. For the binary group decision problem, in
order to assign meaningful values for the similarity
and dissimilarity significance thresholds, it is nec-
essary to grasp the nature of the scale used. Every
group member provides a numerical value within the
range [0, 10]. Values above the middle 5 express bias
toward Yes option, whereas values below 5 express
bias toward the No answer. Exact 5 value means that
the decision cannot be attributed neither to Yes or
No; it is an overlapped, non-biased decision. Here,
a special attention should be made that the exist-
ence of the middle value, 5, is not an indication of
the third decision option, but it merely expresses
the overlap between the Yes and No decision, as in
all other binary classification techniques which use
a similar range of numerical values to express the
degree of each class or decision.

In order to describe how to set the threshold lev-
els of agreement and disagreement, let us explain it
through examples. According to our used meaningful
scale, if two numbers lay both above 5 or if they lay
both below 5, they are referring to same decision
direction; that is they are similar. For instance, the
numerical values: 6&7, 7&8, 9&10, 2&4, 3&2, 0&1,

.. etc, are considered relatively similar pairs; and
the numerical values: 2&6, 3&9, 10&0, 8&4, ... etc,
are considered relatively dissimilar pairs, since the
two pair’s values lie always in a different decision
direction. The value 5 is common between the two
decision directions, that is, it can be similar for any
close values to it regardless of their directions.

The cosine of angle will be used to compute the
similarity value between any two preference vectors,
except for the case when there is a disparity in the
decision directions between the corresponding two
numerical independent components. The cosine of
angle in this case will be divided by 2 (i.e., half-dis-
counted) to reflect the difference in the two decision
directions, “Yes” and “No”.

Generally, setting the values of « and § depends on
the analyst’s vision about which value of similarity can
be considered the threshold of strong agreement or
disagreement. Increasing values of a and 0 restricts
the assessment process to stronger threshold levels,
which assign more similarities to the disagreement
classification. This increases the confidence about
the estimated indicators, but can lead to a non-rep-
resentative assessment of consensus due to the loss
of information or miss-classification, when the simi-
larity should be viewed at less strict level. On the
other hand, decreasing both values leads to a loss in
classifying similarities into agreement or disagree-
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ment categories. More similarities are classified into
strong agreement, and less similarities values are
classified into the strong disagreement level. With a
high amount of difference between a and §, it leads
to some similarities which are neither classified as
agreement nor disagreement, and this of course leads
to the information loss, since the indicators values are
unable in this case to convey any information about
these unclassified similarities in the group decisions.
So, first we recommend that the better way to set
the values of o and § is to adhere to the adequate
view of the analyst, when the similarity between
two numerical judgments can be considered as a
threshold of agreement or disagreement. Second, it
is preferred to have only a single threshold value, say
o, which is used to indicate, whether the similarities
are agreement or disagreement, and without having
unclassified values.

NEWLY DEVELOPED CONSENSUS LEVEL
INDICATORS

We are concerned with developing the six consensus
indicators independent of the significance threshold
values. In the previous approach, that was based on
Ngwenyama et al, previous work, 4 out of 6 indictors
depend on the values of strong threshold of agreement
and disagreement, or in other meaning of the signifi-
cance levels. The problem here is which values of «, §
are considered optimum in the sense that they closely
mirror the consensus level group’s judgment values
into a representative and consistent indicators values.
The determination of the threshold values remain a
vague issue, since it is difficult to assess the effect of
restricting or loosening these values on the obtained
consensus indicators’ values. This holds, unless there
was a considerable experimentation conducted in order
to optimize these values. However, setting these values
should be based on the designer’s or analyst’s opinion
about which value is considered as a threshold for
strong agreement or disagreement, and this also can
sometimes be considered a non-exact issue. In order to
avoid the inherent vagueness about the values of these
thresholds, and in order to be independent from such
values, we propose other six consensus indicators that
do not require specifying values of significance levels.
We redefine new sets of indictors and mathematically
formulate them as follows:

(1) GASI (Group Average Similarity Indicator):

It expresses the average similarity of all pairs of
group members. It measures the level of agreement
or similarity in the group. As this indicator value
reaches 1; this means a complete agreement, and
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as it reaches 0, it means a complete disagreement.
As the value of GASI increases over 0.5; this means
that the agreement level within the group decisions
is higher than the disagreement level in them. GASI
is mathematically expressed as follows:

gl g
GASIzz Z2><Sim(i,j)/g(g—l) (8)
i=1 j=i+l

where: g = the total number of members in the group G

(2) GADI (Group Average Dissimilarity Indicator):

g-l g
GADI=>Y" ZZX[I-Sim(z;j)]/g(g—l) 9)

i=1 j=i+l
where: g = the total number of members in the group G
Or simply, GADI = 1 — GASI
is the average dissimilarity of all pairs of group
members. It measures the level of disagreement in
the group.

(3) GMDI (Group Maximum Dissimilarity Indicator):

Same like eq. (4), it has not changed, since it does
not depend on the value of thresholds. We have given
it a more vivid name. It measures the breadth of
opinions in the group.
GMDI= Min_{Sim*/ |

VijeG,
i#j

(10)

(4) IASI! (Individual Average Similarity Indicator):
It measures the average amount of agreement, every
i" individual bears with other group members.

IASI = Zg:Sim(i, 7) /g -1)

j=lj#i

(11)

The individual who has highest value of IASI is
said to have the maximum agreement with other
group members, IASI™2*, It has been found that this
group member always is the median in the case of
odd group members’ number.

(5) IADI (Individual Average Dissimilarity
Indicator):
It measures the average amount of disagreement,

every i individual bears with other group members.
_ g
IADI' = Z[l—Sim(i,j)] (g-1) (12)
j=ly#i

Or simply, IADI‘ =1 - IASI

(6) IMDI! (Individual Maximum Dissimilarity In-
dicator):
This indicator is same like in eq. (7), it has not
changed, since it does not depend on the value of
thresholds. We have given it a more vivid name. It
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helps to identify, which individual decision has an
ultimate disagreement with other group’s members’
decisions.

IMDI' = Min {Simi’j}

VjegG,
J#i

(13)

Based on the definition of the proposed modified
indicators, it holds that the value of IASI™2 is always
greater than the value of GASIL.

It should be noted that the above introduced new set
of indicators, which do not require the specification
of thresholds for agreement or disagreement, provides
a relief from the previously mentioned vagueness of
Ngwenyama’s indicators. In addition, this new set
takes account of all values of similarity, not only the
count of it, as it was previously.

A NEW MEASURE OF CONSENSUS:
THE STANDARD DEVIATION

We introduce the standard deviation as another
measure of consensus based on statistical character-
istics of the incoming experts’ numerical judgments,
which measures the amount of dispersion from the
centre of group of numerical values. As it was de-
fined for a group of experts’ numerical judgments,
the formula is as follows:

g
D -%)?
i=l

g-1

(14)

where:

x; = the ith expert’s numerical judgement, i = 1,2, ..., g
X = the arithmetic mean of the expert’s judgement

g = the total number of experts in the judging group

The standard deviation as a measure of disper-
sion provides new information about the consensus
level of the group. It differs from GASI in that GASI
quantifies the average of the total pair-wise simi-
larity of the group, whereas the standard deviation
measures the dispersion from the centre or mean
of the group. In order to become acquainted with
the nature of relation between both measures, an
experiment was conducted to understand the rela-
tion between GASI and o. Because of the lack of
the actual real data, this experiment was conducted
on random sets of data. Nine data sets were cre-
ated, each of which contains a different number of
experts participating in judging the binary deci-
sion making problem utilizing the same numerical
judgmental scale that we referred to previously.
Thirty tests —judgment problems (30 points) were
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created uniformly randomly for each set. For each
set, in every point there is computed both standard
deviation and GASI. Then the values of GASI were
plotted versus those of ¢ in scatter graphs (see
Figures 1. through 9). In order to get more insight
about the nature of the relationship between both
measures, the regression analysis was used to fit
the relationship. The polynomial regression was
proved to be the most fitting function amongst all
experimented ones: Linear, Logarithmic, Power,
Polynomial Regression, and Exponential, according
to its attributed highest correlation coefficient values
for the whole number of experts. The polynomial
regression equations are attached to every figure.
It is noticed that the relationships throughout all
experts’ numbers exhibit an inverse proportional-
ity, as was logically expected, and a small amount
of non-linearities detected by small coefficients’
magnitudes in the non-linear term in the polyno-
mial regression function. The main intention of this
experiment was to comprehend the relationships
between the two variables for the purpose of dis-
covering or mining the more embedded informa-
tion within the numerical judgments group to be
able to exploit it in either reaching the consensus
or helping to select the suitable combining crite-
ria or algorithm to be used in reaching the finally
consolidated decision.

After describing the relationship between the de-
veloped GASI indicator and the standard deviation,
it should be noted that these new indicators can be
utilized by the researchers in further development
of new indicators and in developing the new group
technique or combining criteria. For the moment,
the result of this relationship may not be exploited,
but in future it could represent additional informa-
tion used in the group consensus analysis.

1.2
14 — Polynomial (GASI-o)
0.8+
¢ *
= 0.6
<
U 04 .
y= 0.0194x2 — 0.0355x + 1.0161
0.2 4 R? = 0.9808
O T T T T T 1
0 1 2 3 4 5 6
o

Figure 1. Relationship between GASI and o on 2 experts’
problems
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Figure 2. Relationship between GASI and o on 3 experts’

problems
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Figure 4. Relationship between GASI and o on 5 experts’

problems
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Figure 6. Relationship between GASI and o on 7 experts

problems
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Figure 8. Relationship between GASI and o on 9 experts’
problems
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Figure 3. Relationship between GASI and o on 4 experts’

problems
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Figure 5. Relationship between GASI and o on 6 experts’
problems
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Figure 7. Relationship between GASI and o on 8 experts’
problems
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Figure 9. Relationship between GASI and o on 10 experts’
problems
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CONCLUSION

The main purpose of this research is to present a
detailed consensus-based GDM approach to handle
the complex and critical binary or “two-alterna-
tive” decision making problems confronted within
business and engineering applications situations.
This is done through reconfiguring the previously
developed Ngwenyama et al’s consensus indicators
for the binary decision making problem. We have
shown how we can measure the similarity between
any two experts’ numerical decisions according to the
suggested numerical scale that represents the decisive
degree of Yes or No decision answers. Also, we have
provided for contradictory numerical judgments, and
used half-discounting to express this disparity. The
consensus indicators were then reconfigured based
on the estimated adequate thresholds of agreement
and disagreement. We argued that the dependency
on the two thresholds introduces some vagueness
to computations of indicators, and suggested gener-
ally how the values of the two thresholds should be
selected, which was not included in Ngwenyama.
Further, we have developed a new set of indicators
that do not require the specification of significance
levels or thresholds. Four of the original indicators,
which were depending on threshold values, were
changed. These new sets of indicators are based on
the average, and provide more information than the
previously developed ones in the sense that they take
into account the magnitude of similarity, not only
the counts of similar decisions satisfying thresholds
as it was previously. Moreover, it is considered more
compact information in the sense that four out of the
six indicators can be expressed only in terms of two,
the GSAQ and ISAQ. Finally, we have introduced a
new and simple measure of group decision similarity;

the standard deviation. The relationship between the
newly developed indicator GASI and the standard
deviation was addressed using the regression analysis
technique. The polynomial regression best fitted the
relationship which has a logically inverse propor-
tionality between the two variables. These consensus
indicators and measure of dispersion can be used in
future researches to either help selecting the adequate
combing criteria or developing new heuristics based
on consensus to combine the experts’ judgments.
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