
AGRIC. ECON. – CZECH, 52, 2006 (4): 177–185 177

In the current state, software product quality inter-
national standards consist of several standards, which
are not fully consistent. The international research
standardisation project SQuaRE (Software Quality
Requirements and Evaluation) is running with the aim
to develop a new consistent standard series ISO/IEC
250xx for the software product quality, evaluated
from the users and stakeholders point of view. More
details on this project are reported in the article (Va-
níček 2005) in the proceedings of this conference. In
Vaníček (2005), there is also listed a more extensive
bibliography concerning our problems.

Quality is generally defined as a degree to which
a set of inherent characteristic fulfils the require-

ments. Requirements are needs or an expectation
that is stated, generally implied, or obligatory. One
of the weakest spots of the today’s stage of software
product quality standards is the absence of the
guidelines for the exact quality requirements for-
mulation. For the unbiased quality evaluation such
requirements have to be clear, complete, consistent
and measurable.

The present contribution tries to draw the line
how to define the stack holders requirements for
software product to facilitate the objective quality
evaluation and will be provided as an input for the
requirement part ISO/IEC 2503x of standards in
SQuaRE standard series.

Software quality requirements

Požadavky na jakost softwaru

J. VANÍČEK

Czech University of Agriculture, Prague, Czech Republic

Abstract: At the present time, the international standards and technical reports for system and software product quality
are dispersed in several series of normative documents (ISO/IEC 9126, ISO/IEC 14598, ISO/IEC 12119 etc.). These docu-
ments are not purely consistent and do not contain a tools for exact requirements set-ups. As quality is defined as a degree
to which the set of inherent characteristic fulfils requirements, the exact requirement formulation is the key point for the
quality measurement evaluation. This paper presents the framework for quality requirements for software, which is re-
commendable to use in the new international standard series ISO/IEC 250xx developed on the SQuaRE (Software Quality
Requirements and Evaluation) standardisation research project. The main part of this contribution was presented on the
conference Agrarian Perspectives XIV, organised by the Czech University of Agriculture in Prague, September 20 to 21,
2005.

Key words: software quality; quality requirements; requirements for requirements formulation; international standardiza-
tion; project SQuaRE

Abstrakt: V současnosti jsou mezinárodní normy a technické zprávy pro jakost systémů a softwaru rozptýleny do několika
řad normativních dokumentů (ISO/IEC 9126, ISO/IEC 14598, ISO/IEC 12119 a další). Tyto dokumenty nejsou zcela navzá-
jem konsistentní a neobsahují nástroje pro přesné stanovení požadavků. Protože jakost je definována jako stupeň splnění
požadavků souborem inherentních znaků, je přesná formulace požadavků klíčovým bodem v procesu měření a hodnocení
jakosti. Tento článek představuje rámec pro formulaci požadavků na jakost softwaru, který by měl být užit v nové řadě
mezinárodních norem ISO/IEC 250xx, vyvíjených v rámci mezinárodního vědeckého normalizačního projektu SQuaRE
(Požadavky na jakost software a jejich hodnocení). Podstatná část tohoto příspěvku byla přednesena na konferenci Agrární
perspektivy XIV, uspořádané Českou zemědělskou univerzitou v Praze 20.–21. září 2005.

Klíčová slova: jakost softwaru; požadavky na jakost; požadavky na formulaci požadavků; mezinárodní normalizace; projekt
SQuaRE

Supported by the Ministry of Education, Youth and Sports of the Czech Republic (Grant No. MSM 6046070904 – In-
formation and knowledge support of strategic control).

178 AGRIC. ECON. – CZECH, 52, 2006 (4): 177–185

SOFTWARE AND SYSTEMS

The topic of this contribution is the software quality
requirements framework. However, software usually
appears as a part of a larger system. Therefore, it can
be useful to take a system view. A system is defined
as a combination of interacting elements organised
to achieve one or more stated purposes. This defini-
tion allows a high degree of freedom to decide what
constitutes a system, and the boundaries of a system
will depend very much on the point of view. In this
way, the system of interest is the system whose life
cycle is under consideration in the context of this
contribution.

The boundary of a system depends on the point of
view as illustrated by the following three examples.
One example is the control system of an aircraft en-
gine, the second example is the complete engine of an
aircraft, and a third example is the complete aircraft.
An aircraft can be considered as a combination of ele-
ments (the engines, the wings, etc.). These elements
can also be considered systems on their own.

What constitutes the elements of a system depends
son the point of view and there may be several dif-
ferent appropriate ways of defining the elements of
a system. Software may be considered one of the
elements of a system. Figure 1 illustrates one way of
looking at the elements constituting a system. The
illustration does not show the interaction between
elements.

As illustrated in Figure 1, software can be viewed as
an element of a system, and it is often appropriate to
view software as a part of a larger system. However,
software can also be viewed in isolation. The most
appropriate view depends on the purpose.

STAKEHOLDERS AND STAKEHOLDER
REQUIREMENTS

The stakeholders of a system include all persons,
organizations and bodies having a legitimate inter-
est in the system in question. Systems have a variety
of stakeholders who have an interest in the system
throughout its life cycle. Stakeholders have different
needs and expectations to the system. Their needs
and expectations may change throughout the sys-
tems life cycle. Stakeholders include individuals (for
example end users), organisations (for example end
user organisations or development organisations),
and society (for example the statutory and regulatory
authorities or the general public).

Stakeholder needs can be explicitly stated or only
implied. In some cases, stakeholders are not aware
of some of their needs. In some cases, the real needs
of some stakeholders are different from what they
express. Implied needs are often implied by the con-
text where the software product is to be used and
represent expectations based on similar software
products or existing work routines, normal work-
ing procedures and operations of business, laws and
regulations, etc. In many situations, stakeholder needs
only become evident when the software product and
the related business processes or tasks can be tried
out. Scenarios use cases, and prototypes represent
methods to identify needs at an early stage of a de-
velopment project.

The stakeholders’ needs and expectations are iden-
tified through a requirements elicitation and defini-
tion process as illustrated in Figure 2. The process
takes all stakeholders’ needs, wants, desires, and
expectations into consideration. This includes the

Business processes

System

Other elements

Environment

Services

Hardware
Software

Users

Figure 1. Elements of a system

Stakeholders’
needs and

expectations

Stakeholders’
requirements

Stakeholder requirements definition
process

* Stated Elicited from
all relevant
stakeholders

* Implied
* Unaware Figure 2. Stakeholder require-

ments definition

AGRIC. ECON. – CZECH, 52, 2006 (4): 177–185 179

needs and requirements imposed by society, the
constraints imposed by the acquirer, and the needs
from the end users.

Different categories of stakeholders often have dif-
ferent requirements. In some situations, stakeholders
have conflicting requirements. Conflicts between
stakeholder requirements could for example be be-
tween different end user perspectives, or between
acquirer needs and available skills, experiences or
resources in the developing organisation.

The result of the definition process is called stake-
holders requirements.

An analysis process aims at making a transformation
of stakeholder requirements into a technical view of
system requirements that can be used to realise the
desired system, see Figure 3. The technical view of
requirements is called system requirements. System
requirements are verifiable and will state which cha-
racteristics the system is to possess in order to satisfy
stakeholder requirements.

A system will often be composed of different ele-
ments, each with specific characteristics and serv-
ing different purposes in the whole system. In order
to be operational, system requirements have to be
formulated as requirements to the different system
elements. As different elements interact to offer the
system capabilities, requirements to different system
elements cannot be seen in isolation, but only in a
broader view including requirements to other system
elements. System requirements may imply require-
ments to for example software, but it is not always
clear whether or not a system requirement implies a
software requirement. System requirements can be
implemented in different ways, for example either in
hardware or in software or as a business process (i.e.
a manual process).

SOFTWARE QUALITY

Software quality is the degree to which the software
is capable to provide and maintain a specified level

of service. The required level of service is specified
according to a quality model. The software product
quality model provided in ISO/IEC 9126-1 and also
prepared ISO/IEC 25010 defines six quality character-
istics: functionality, reliability, usability, maintainability,
portability, and efficiency. In addition, the quality model
defines quality in use in terms of four characteristics:
effectiveness, productivity, safety and satisfaction.
The quality characteristics have defined sub-char-
acteristics and the standard allows for user-defined
sub-sub-characteristics in a hierarchical structure.
The intention is that the defined quality characteristics
cover all quality aspects of interest for most software
products and as such can be used as a checklist for
ensuring the complete coverage of quality.

The quality model suggests three different views on
quality: internal quality, external quality, and quality
in use. Internal quality provides a ‘white box’ view
of software and addresses properties of the software
product that typically are available during the develop-
ment. External quality provides a ‘black box’ view of
the software and addresses properties related to the
execution of the software. The quality in use view is
related to application of the software in its operational
environment, for carrying out the specified tasks by
specified users. Internal quality has an impact on ex-
ternal quality, which again has an impact on quality in
use. These impact relations are shown in Figure 4.

Internal quality is mainly related to static properties
of the software, external quality is mainly related to
dynamic properties of the software, and quality in
use is mainly related to dynamic properties of the
system of which the software is an element.

The quality model serves as a framework to ensure
that all aspects of quality are considered, both from the
internal, external, and quality in use point of view.

SOFTWARE PROPERTIES

The capabilities of a software product are deter-
mined by its properties. Some software properties are

Stakeholders’
requirements

System
requirements

Elicited from
all relevant
stakeholders

Characteristics
and attributes Requirements analysis process
Constraints

Figure 3. Requirements analysis

180 AGRIC. ECON. – CZECH, 52, 2006 (4): 177–185

inherent to the software product; some are assigned
to the software product. “Inherent”, as opposed to
“assigned”, means existing in something, especially
as a permanent characteristic or feature. Examples
of inherent properties are number of lines of code
and the accuracy of a numeric calculation provided
by the software. Examples of the assigned properties
are the owner of a software product and the price of
a software product.

Inherent properties can be classified as either func-
tional properties or quality properties. Functional
properties determine what the software is able to do.
These properties relate to the environment, in which
the software can be executed (for example operating
system), the interfaces to other software, and the
functions the software is able to perform. Quality
properties show how well the software performs. In
other words, the quality properties show the degree
to which the software is able to provide and maintain
its specified services. Figure 5 illustrates this clas-
sification of software properties.

Quality is something that is inherent to a soft-
ware product. An assigned property is therefore
not considered to be a quality characteristic of the
software, since it can be changed without changing
the software.

The software quality properties are classified ac-
cording to the characteristics and sub-characteristics
defined in the ISO/IEC 25010 software quality model,
i.e. functionality, reliability, etc.

SOFTWARE QUALITY MEASUREMENT
MODEL

A statement about the quality of a software product
is an expression about the capability of the software
to perform and maintain a specified level of service.
Software quality can therefore be formulated as the
degree to which the software is capable to perform and
maintain a specified level of service. The approach to
software quality follows a measurement approach, i.e.
it is based on measuring the degree to which software
properties fulfils specified requirements.

Inherent software properties, that can be distin-
guished quantitatively or qualitatively, are called
attributes. Quality attributes are measured as the
degree to which the software product is capable of
providing and maintaining its specified level of serv-
ice. Quality attributes belong to one or more (sub)-
characteristics.

Quality attributes are measured by applying a mea-
surement method. A measurement method is a logical
sequence of operations used to quantify an attribute
with respect to a specified scale. The result of apply-
ing a measurement method is called a base measure.
The quality characteristics and sub-characteristics
can be quantified by applying measurement func-
tions. A measurement function is an algorithm used
to combine base measures. The result of applying a
measurement function is called a quality measure.
In this way, quality measures become quantifications
of the quality characteristics and sub-characteristics.
More than one quality measure may be used to de-
scribe a quality characteristic or sub-characteristic.
Not all software properties are measurable. This is in
particular the case for functional properties.

Figure 6 shows the relations between the ISO/IEC
25010 quality model and the measurement model
suggested in ISO/IEC 15939.

Quality in use

External quality

Internal quality

Figure 4. Software product quality

Software properties Inherent properties Functional properties

Quality properties

For example price,
delivery date, product
future, product supplier

Assigned properties

Figure 5. Software properties

AGRIC. ECON. – CZECH, 52, 2006 (4): 177–185 181

SOFTWARE QUALITY REQUIREMENTS

A measurement function represents an interpreta-
tion of a software quality property and a target value of
the quality measure represents a quality requirement.
Similarly, the actual value of the quality measurement
represents the observed quality of the software.

Software quality requirements as well as all other
requirements cannot be seen in isolation, but must be
view in a broader context. Software quality require-
ments have a particular close relation to functional
requirements. Functional requirements play an im-
portant role for specifying software quality require-
ments. Functionality is one of the six characteristics
for internal and external quality in ISO/IEC 9126-
1 and ISO/IEC 25010. Functionality requirements
should not be confused with functional requirements.
Functionality is the capability of the software to pro-
vide functions, which meet its functional require-
ments. Functionality requirements are refined into
requirements for the software product to be suitable,
accurate, interoperable, secure and compliant with
the relevant functional standards and regulations.

In some situations, it is meaningful to specify a
quality requirement for a software product, whereas in
other situations a quality requirement only applies to
a portion of the software product. For example, some
functions are only relevant for specific users and have
specific quality requirements, which are different from
quality requirements for other functions intended for

other purposes and other users. It is therefore impor-
tant to specify which portion of a software product is
relevant for a software quality requirement. In other
words, a quality requirement is linked to a portion of
the software product (a set of functions).

For example, some functions may be intended for
general end users and may hence require low error
tolerance, whereas another group of functions may
be intended for specialists and thus permit a greater
error tolerance. In both cases, the error tolerance
mechanism and the degree of error tolerance required
should be rigorously specified.

Quality in use is defined as the extent to which a
product meets the needs of specified users to achieve
specified goals with effectiveness, productivity, safety
and satisfaction in a specified context of use. Therefore
quality in use requirements are closely related to
other system requirements such as hardware require-
ments, business requirements, and requirements to
end-user.

SYSTEM REQUIREMENTS CATEGORISATION

A system consists of a number of interacting ele-
ments. They can be categorised in different ways.
Figure 1 provides one possible categorisation. Figure 7
provides a similar categorisation of system require-
ments. System requirements can for example include
requirements for software, hardware, organisation,

Attributes for quality
measures

Measurement
primitives

Quality measure

Quality attributes

Quality sub-
characteristics

Quality characteristics

Measurement
method

Measurement
function

Software product
quality

Figure 6. Quality model and measurement
model

182 AGRIC. ECON. – CZECH, 52, 2006 (4): 177–185

and may come from a variety of stakeholders includ-
ing end users and organisations.

Software requirements address, on one hand, the
software product or the software development process.
There will often be dependencies between software
development requirements and software product
requirements.

Software development requirements may for ex-
ample include requirements for artefacts, processes,
project, development organisation, and developers.
Requirements to the software development process are
often based on a hypothesis that a ‘good’ development
process will ensure a ‘good’ software product.

Quality requirements life cycle model

Stakeholder requirements are defined from stake-
holder needs. Stakeholder needs come from many
sources. When the system in question is completely
new, i.e. no similar systems exist; it may be difficult
to identify the real needs of stakeholders. In other
situations a system exists, but it is realised in a differ-
ent way, for example as a manual business process. In
that case stakeholders will usually be able to express
many needs and expectations.

Figure 8 illustrates the situation where a similar sys-
tem already exists and is in use. In that case the users
of the existing system will be a major source of input
to the requirements of the new system. Stakeholder
needs can largely be identified based on experiences
from actual use of the existing system. Stakeholder
requirements are defined from the stakeholder needs
as shown in Figure 3. An analysis of stakeholder
requirements will produce system requirements as
shown in Figure 4. Software quality requirements are
derived as part of the system requirements. There are

three views of software quality as shown in Figure 5.
These different views give rise to three types of soft-
ware quality requirements:
– Quality in use requirements
– External quality requirements
– Internal quality requirements

Quality in use requirements are typically derived
from stakeholder requirements such as a) business
requirements (company policy, competitors, etc.), b)
functional requirements, and c) application domain
specific requirements.

External quality requirements are typically derived
from a number of sources including a) stakeholder
requirements, b) legal requirements, c) standards
and guidelines for the relevant application, d) quality
in use requirements, e) functional requirements,
f) application domain specific requirements, and
g) security requirements, which may be derived from
risk analysis.

Internal quality requirements are typically derived
from a number of sources including a) external quality
requirements, b) company policy, c) development po-
licy and limitations, and d) best practice guidelines.

Quality in use requirements may imply external qua-
lity requirements and similarly external quality require-
ments may imply internal quality requirements. The
software implementation process realises the software
quality requirements. The quality of the new system can
be used as input to another new system again, thereby
completing the cycle indicated in Figure 8.

Software requirements can be specified as a part
of an iterative development process, where one ver-
sion of the software is used as a basis for deciding
the requirements for the next version. In general, it
is the functional requirements that evolve in this way,
whereas the quality requirements are fixed. However,

So
ftw

ar
e

re
qu

ire
m

en
ts

Software
product

requirements

Software
development
requirements

Inherent
property

requirements

Assigned
property

requirements

Functional requirements

External quality
Internal quality

Quality in use

Include for example requirements for hardware, businesses, business
processes, and end users

Development organisation requirements

Development process requirements

Include for example requirements for
price, delivery date, product future, and
product supplier

Quality
requirements

O
th

er
 sy

st
em

re

qu
ire

m
en

ts

S y
st

em
 re

qu
ire

m
en

ts

Figure 7. System requirements cate-
gorisation

AGRIC. ECON. – CZECH, 52, 2006 (4): 177–185 183

it is not exclude that quality requirements evolve
from one version to the next.

Requirements for quality requirements

Software is usually a part of a larger system. Archi-
tectural decisions made at a higher level of system
hierarchical structure define boundaries and interfaces
to the software. Architectural decisions about which
parts of a system will actually be implemented in
software may not or only partly be made at the time
when qua-lity requirements are specified. Therefore,
it may be impossible to decide at an early time in the
development process whether or not a quality require-
ment is concerned with the software.

Software quality requirements may be a part of a
contractual agreement between acquirer and deve-
loper or may be input for a product quality evalu-
ation. No specific development model or measures
are prescribed or assumed.

System consides for stakeholder requirements
for software quality

The intended purpose of the software shall be
documented. The description should take a system

perspective when the software is part of a larger
system.

The system solution constraints on the stakeholder
software quality requirements shall be documented.
The rationale and sources for system solution con-
straints should be documented as far as possible.

All identified stakeholders shall be listed. The
identified stakeholders roles and interests shall be
documented. It shall be documented whether or
not a stakeholder is taken into consideration when
identifying stakeholder software quality requirements.
If a stakeholder is not taken into consideration, the
rationale should be documented.

A commercially successful software product may
have excluded specific stakeholder requirements from
its requirements. For example, it may be decided to
fulfil requirements of decision makers and to neglect
some end user requirements. It is important to be
conscious about such decisions. A consequence is
that some stakeholders may not be satisfied with the
software product.

Each stakeholder software quality requirement
shall be uniquely identified. Each stakeholder soft-
ware quality requirement shall be traceable to the
individual stakeholders or classes of stakeholders.
Stakeholder software quality requirements may be

Figure 8. Quality requirements life
cycle

Software Quality
Requirements

(System
Requirements)

Stakeholder
Requirements

Elicited from all
relevant stakeholders

Software Product
(system)

External
Quality

Requirements

Internal
Quality

Requirements

Quality in use
requirements

Stakeholder needs

Quality in use

External
Quality

Internal
Quality

Implementation

184 AGRIC. ECON. – CZECH, 52, 2006 (4): 177–185

documented in any informal, semiformal or formal no-
tation. Stakeholder requirements are often expressed
in plain text (informal notation) and concentrate on
the system purpose and behaviour and are described
in the context of the expected operational environ-
ment and the conditions of use. Specific concepts
and terms used should be defined or explained, in
order to avoid misunderstandings of the quality re-
quirements.

Scenarios and user interactions can be helpful to
identify stakeholder software quality requirements.
Scenarios should include a representative set of ac-
tivity sequences to identify all required services that
correspond to the anticipated operational and support
scenarios and environments. Also the interaction
between users and the system should be identified. If
possible, stakeholder software quality requirements
should be traceable to scenarios and user interaction
descriptions.

Verification and validation considerations
for stakeholder requirements for software
quality

Stakeholder software quality requirements shall be
prioritised. The quality model can be used as a check-
list to ensure the coverage of all quality aspects.

Incomplete, ambiguous, and unverifiable stake-
holder software quality requirements shall be identi-
fied. The identified problems shall be documented.
Conflicts, inconsistencies, and incongruence between
the stakeholder software quality requirements shall
be identified. The identified issues shall be docu-
mented. Additional stakeholder requirements solving
the identified problems with stakeholder software
quality requirements shall be documented accord-
ing to requirements for stakeholder software quality
requirements. Additional stakeholder requirements
shall be traceable to original stakeholder software
quality requirements. Stakeholder requirements
that have been replaced shall be marked as such.
Stakeholder software quality requirements should
be validated. If the validation process identifies new
stakeholder requirements or modifies the existing
requirements, this shall be stated and the reason
shall be documented.

System and quality model considerations
for technical requirements for software quality

The functional boundaries of the software in terms
of functional behaviour and properties to be provided

shall be documented. The documentation should
include usage, the benefits, system specified lifetime,
system criticality and risk dependencies like safety
or hazard issues. The documentation should also
include architectural decisions that are allocated
from design at higher levels in the structure of the
system about which functions will be implemented
as part of the software. Implementation constraints
relevant for the technical requirements for software
quality shall be documented.

Technical software quality requirements shall be
categorised according to the quality model as one
of the following:
– Quality in use requirement
– External quality requirement
– Internal quality requirement

A technical software quality requirement shall be
specified in terms of a measurement function and
associated target value. Measurement functions shall
be defined according to requirements in ISO/IEC
25020. It is recommended to develop and maintain
a list of quality measures for use. Applying the same
set of measures for different projects makes it pos-
sible to create an experience base as described in
ISO/IEC 14598-3 (ISO/IEC 25042). This approach
makes estimation more reliable. Alternatively the
GQM (Goal-Question-Metric) or similar approaches
may be applied to identify appropriate measures for
specific situations. The target values for the measure
are the values, which are acceptable for fulfilling the
quality requirement. The target values may be a single
value or a range of values.

Specific concepts and terms used should be defined
or explained, in order to avoid misunderstandings
of the technical software quality requirements. The
operational profile for a technical software quality
requirement shall be specified when relevant. The
operational profile provides information about the
workload and types of transactions under which the
software must be able to maintain a specified level of
service. Different operational profiles may result in
different measurement results and hence without a
specification of the operational profile, the require-
ment is not uniquely specified.

Verification and validation considerations
for technical requirements for software quality

Conflicts between technical software quality re-
quirements shall be identified and documented.

In order to understand whether two or more quality
requirements are conflicting, a deep understanding

AGRIC. ECON. – CZECH, 52, 2006 (4): 177–185 185

of the underlying quality model is often mandatory.
Practical experiences indicate that for example a
high reliability requirement, a high maintainability
requirement and a high efficiency requirement may
be difficult to fulfil simultaneously. However, the ISO/
IEC 9126-1 quality model provides no information
suggesting such relationships (conflict). As long as
there are no formal reasons to claim requirements to
be conflicting, there is nothing preventing an evalua-
tion or certification of these requirements. However,
it may be extremely difficult to develop the software
according to such requirements. Requirements may
be consistent from the theoretical point of view,
but almost impossible to fulfil in practise. What is
possible depends largely on the abilities of the soft-
ware developers, and also on the methods, tools and
techniques utilised.

Conflicts between technical stakeholder require-
ments and implementation constraints shall be
identified and documented. Additional technical
requirements solving identified problems with
technical software quality requirements shall be
documented according to requirements for techni-
cal software quality requirements. Traceability to
original technical software quality requirements
shall be ensured. If implementation constraints are
changed, this shall be documented. Traceability to
original implementation constraint shall be ensured.
The technical software quality requirements shall
be reviewed and approved. It shall be stated who
has reviewed and approved the technical software
quality requirements.

CONCLUSION

The key moment from the author point of view is
the concrete quality attributes and concrete measures.
Without an agreement which attributes are essen-
tial and how to measure these attributes, all quality
framework will be only an empty box, without the
utilization possibility in the concrete situation. The
problem of attributes and measures is the general
problem of software product quality. From the au-
thors point of view, the possible accomplishment of
the SQuaRE project depends strongly on the ability
of the software standardization community to share
the experience in the software quality measures used
by the vanward softwarehouses and software quality
experts and on the agreement which measures will
be selected for the quality requirement formulation,
the consecutive software quality measurement and
quality evaluation and rating.

REFERENCES

Vaníček J. (2005): Software and Data Quality. In:
Proceedings conference Agricultural perspectives
XIV. Czech University of Agriculture in Prague,
September 20–21.

ISO/IEC 9126-1:2001, Software Engineering – Prod-
uct quality – Part 1: Quality model.

Other related resources are referenced on the paper:
Vaníček J.: Software and Data Quality, published on
issue 3/2006 of this journal pp. 138–146.

Arrived on 1st February 2006

Contact address:

Jiří Vaníček, Czech University of Agriculture Prague, Kamýcká 129, 165 21 Prague 6-Suchdol, Czech Republic
tel.: +420 224 382 362, e-mail: vanicek@pef.czu.cz

