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INTRODUCTION

Image classification is one of the basic procedures 
we use to process spatial data. The goal of the clas-
sification is to assign pattern to the definite class. 
We distinguish in general two types of classification: 
supervised and unsupervised approach. It depends 
on the fact wheiter we have some information about 
classes and wheiter we have some training data sets 
in disposal to be able to create sufficient mathemati-
cal model of the class etalons in the feature space 
or wheiter we have no field information. Having no 
training data, we speak about clusters and we use the 
methods of cluster analysis. There are two parts to 
training process, selection of an appropriate class list 
and an adequately precise mathematical description 
of each class. The choice of the decision rule, for the 
discrimination of mentioned feature space, plays key 
role in supervised classification.

There are two basic approaches:
1) Non-parametric approach – usually uses linear 

(exclusively non-linear) functions and mathematical 
or geometrical approaches for subdivision of the 

feature space. In this case, the Euclidian distances 
are evaluated. Examples: Minimum distance to 
means, the method of the nearest neighbor or 
Parallelepiped box. 

2) Parametric approach, where statistical properties 
of n-dimensional feature space are used – mean 
vector, covariance matrices, distribution functions 
and statistical distances are evaluated – Mahalano-
bis distance, probability, etc. Examples: Maximum 
likelihood, Bayes method.

The paper is devoted to the problems of the para-
metric approach. Statistical modeling of spatial data 
distribution is the key to spatial data pattern recog-
nition. Spatial data error distribution is the base for 
the spatial data accuracy analysis and quality control. 
Errors come from the process of data collecting, deal-
ing and methods applying. Spatial data distribution is 
based on the probability statistical analysis theory and 
gets parameterised the distribution density function. 
According to the sample data property, it is hypoth-
esized to suit some distribution model (e.g. Gaussian 
distribution). Then the model has to be tested under 
given significance level and according to the testing 
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result, its distribution model is founded (Van Ryzin 
1977; Liu, Shi 2000). 

The Gaussian model for distributions is very con-
venient, as the Gaussian density function has many 
convenient properties and characteristics, both theo-
retically and practically. The main one among these 
properties is that its use requires knowledge of only 
the first two statistical moments; the mean vector and 
the covariance matrix, both of which can be usually 
estimated adequately from the reasonable sized train-
ing set (Landgrebe 2003; Zhou, Luo 2001 ).

There are many practical problems of spatial data 
distributions, it is impossible to hypothesize distri-
bution function firstly and some distribution models 
such as Gaussian distribution may not suit to the com-
plicated distribution in practice. On the other hand, 
a purely nonparametric approach is not frequently 
used, as very large training sets are usually required 
to provide precise enough estimates of nonparametric 
class densities. A very practical approach is to model 
each class density by a linear combination of Gaussian 
densities. Theoretically, every smooth density function 
can be approximated within any accuracy by such a 
mixture of Gaussian densities. And of course, this 
approach has also its difficulties and limits (Nguyen,  
Ocelíková 1999; Lin 1997). 

In many cases, we are not able to test the assumptions 
of the proposed distribution function. In addition, the 
probability function distribution is usually one-peak, 
it means the function has only one maximum, but 
maybe there are multi-peaks functions in practical 
problems. Then we meet the difficulties when we 
use the traditional probability statistical approach 
for dealing and analysing spatial data information. 
In this case, we propose to use the approach based 
on the maximum entropy theory that can optimally 
describe the spatial data error distribution. 

ENTROPY 

Shannon successfully introduced the concept of 
entropy into the information theory. He explained it as 
the uncertainty of information, and gave us the formula 
that can measure the amount of information.

Given a random variable X (discrete form), whose 
value is got randomly, then, information entropy of X 
can be defined according (Gallager 1968) as: 

where
X  = a1, a2, … an
P(X)  = p(a1), p(a2), … p(an) 

and 
0 ≤ p (ai) ≤ 1  (i = 1, 2, …)

and p(ai) is the probability of ai

When the value of x is got continuously, and its 
probability density function is p(x), then information 
entropy of x can be defined as:

 (1)

The useful properties of information entropy are 
listed as follows:

H(p1, p2, … pn) ≤ log n (2)

When and only when

                           (i = 1, 2, … n),

equation (2) with the sign equal is valid.
It indicates that information entropy of equal prob-

ability field is maximal on conditions that the numbers 
of basic events are equal.

H (p1, p2, … pn) ≥ 0  (3)

When and only when the distribution of x is a degen-
erate distribution, equation (3) is valid with the sign 
equal. It indicates that determinate field is minimal.

MAXIMUM ENTROPY 

On the other hand, we have to be able to determine 
the probability pi (i = 1, 2, … n) of random variable xi 
(i = 1, 2, … n) also in case if some numerical charac-
teristics of the random variable can be got from the 
observed data when the probability distribution func-
tion satisfying the observed data may be limitless. 

How to approach this case we can find in Janyes 
(1957). When deducing from part information, we 
must select such a probability distribution that has 
maximum entropy and obey to all known informa-
tion. This is only one unbiased distribution we can 
do. And using any other distribution means drawing 
occasional assumptions to information, which may 
not exist originally.

This principle of statistical deducing is called maxi-
mum entropy theory and underlines that the prob-
ability distribution should be in accordance with 
known information. The measurements should suit 
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to the samples and the unknown parts should not 
be hypothesized at all, because any hypothesis will 
add some information that may not exist originally. 
The reason is that the estimation drawing from the 
maximum entropy principle will approximate to the 
real distribution best. Maximum entropy theory can 
be explained by the definition and properties of in-
formation entropy. The mathematical formulas of 
maximum entropy theory are given as follows:

 (4)

                                           i = 1, 2, … n

                                           i = 1, 2, … n

where gj(x) represents the observed function                          
and corresponding mean for the discrete case of data. 
When data is got continuously, the following formulas 
will be valid.

 (5)

                                           n = 1, 2, … m

un denote the n-rank moment of x, which can be calcu- 
lated from the sample data, and m is the rank of the 
origin moment and 

where N is the number of sample data.
According to the maximum entropy theory, we 

can formulate such a conclusion: some probability 
distribution functions in probability theory are actu-
ally special cases that can be got from the maximum 
entropy theory on different conditions. For example, 
maximum entropy distribution is mean distribution 
on condition that mean is fixed, and it is Gauss dis-
tribution when the variance is fixed, etc. 

This means that the maximum entropy theory can 
be regarded as unified theory base of different prob-
ability distribution. As proposed in Shi et al. (2003), 
the formula of maximum entropy distribution function 
can be given as follows:

It means

where λ denote Lagrange indefinite operator. The error 
estimation can be computed using the formula:

                                                              n = 1, 2, … m  (6)

and the optimal object function can be defined as:

 (7)

εn is the remainder error and ε is optimal value, which 
may meet the need of formula for εn by adjusting the 
value of λn (n = 1, 2, … m).

CONCLUSION

Based on the maximum entropy theory, the paper 
presents a new method to model spatial data error 
distribution function. There is no doubt about the 
usefulness of given estimations namely when the spatial 
modelling task results support significant decisions 
and are used to select optimal scenarios or strategic 
plans. Based on the information theory, this method 
uses entropy function as an objective function to re-
duce the human interference. It does not neccessary 
to hypothesize sample data to suit some common 
distribution and then test the hypothesis. But this 
method also has some disadvantage. To ensure high 
suited accuracy, much bigger sample is required. And 
the upper limit and lower limit of integral interval 
must be selected carefully, or the rear of maximum 
entropy distribution will be beyond the mark. 

The problems of maximum entropy design have been 
discussed at the conference Agrarian Prospectives 
2004 in the session of Applied Informatics.
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