BORM - overview of the methodology and case study
of the agrarian information system

BORM — prehled metodolologie a pripadova studie informacniho systému
pro agrarni komoru

V. MERUNKA

Czech University of Agriculture, Prague, Czech Republic

Abstract: BORM (Business Object Relationship Modelling) is a methodology developed to capture the knowledge of process-
based business systems. It has been in development since 1993 and has proved an effective method, which is popular with both
users and analysts. This paper presents BORM, its tools, and methods via a case study of the agrarian information system.
BORM is based on the combination of object-oriented approach and process-based modelling. Also, an advantage of BORM isthe
small number of concepts required combined with a considerable expressiveness. In this way, BORM isin the tradition of pure
approach established over the past years by structured modeling techniques.

Keywords: Business Object Relation Modelling (BORM), object-oriented approach, process-based analysis, information sys-
tem development, business processes, requirement engineering

Abstrakt: BORM je metodologie pro vyvoj business systémt, ktera je zalozena na ziskavani znalosti o procesech. Od
roku 1993, kdy je metodologie vyvijena, byla prokazana jako efektivni a oblibeny pfistup jak mezi uzivateli, tak i mezi
analytiky. Tento Clanek stru¢né prezentuje vlastni metodologii, jeji nastroje a postupy na piikladé ptipadové studie infor-
macniho systému pro agrarni komoru. BORM je zaloZzen na kombinaci objektové orientovaného ptistupu a procesniho
modelovani. Jednou z jeho dalSich z vyhod je maly pocet pozadovanych pojmil, které vSak maji bohaté vyjadfovaci moz-
nosti. Z tohoto pohledu BORM navazuje svym Cistym a jednoduchym pfistupem na tradici zavedenou pied lety technika-
mi strukturované analyzy informacnich systémd.

Kli¢ova slova: BORM, objektové orientovany pfistup, procesné zalozena analyza, tvorba informacénich systému, podnikové

procesy, ziskavani a modelovani pozadavkt

INTRODUCTION

The attitude of business towards Information Techno-
logy (IT) is constantly changing towards being more and
more sophisticated. Systems and tools become available.
Additionally, there is a constant exchange of ideas be-
tween the IT and the business communities arising out
of the development of knowledge-based systems. One
such example is the method presented here, which was
originally developed to capture the knowledge necessary
for the development of IT systems but which has re-
vealed an increasing potential for more general knowl-
edge based system development. The work described
here originally started in 1993 and was intended to pro-
vide seamless support for the building of object oriented
software systems based on pure object-oriented lan-
guages, such as ‘Smalltalk’ (Hunt 1997; Hopkins, Horan
1995; Beck 1997), together with pure object databases,
such as ‘Gemstone’. It is now realised that this method
also has a significant potential in capturing knowledge

AGRIC. ECON. — CZECH, 49, 2003 (9): 397406

of business processes, business data and business is-
sues (Bahrami 1999, Gray 1992, Catell 1994).

In our experience in the period 0f 90°, during the work
on major projects, IS analysts face the problem when not
all system requirements are known at the start of the
project and the customer expects that discovery and re-
finement thereof will be part of the project. The problem
is even more complicated because the function of the
major systems built has impact on the very organization-
al and management structure of a company or organiza-
tion where the system is implemented — such as new or
modified job positions, management changes, new posi-
tions, new departments, etc. Therefore it is desirable to
address also the change of these related structures dur-
ing the work on information systems (Blaha 1998; Shri-
ver, Wegner 1987).

Process models composed from business objects re-
present a proven and actually used method of analysis,
design and implementation of organizational changes
with active participation of the customers and with relat-

397

Table 1. BORN project

Project NSF NS NPD NO ANS ANA
National Agrarian Chamber (analysis and design of
software for commodity market public information system) 7 7 6 4 4
Hospital complex (BPR of organization structure) 6 12 12 8 10 12
TV and radio broadcasting company (BPR and
company transformation for open market) 4 9 9 14 8 8
Regional electricity distribution company
(customer information system analysis) 12 19 19 23 12 12
Regional electricity distribution company
(failure handling information system analysis

and prototype implementation) 19 31 34 27 13 14
Regional gas distribution company (BPR of all company) 28 81 97 210 11 12
Regional gas distribution company (BPR of all company) 23 60 63 120 12 12
Key
NSF = Number of system functions NO = Number of objects! (participants)

NS
NPD = Number of process diagrams

= Number of scenarios

ANS = Average number of states per object

ANA = Average number of activities> per object

t Only objects having activities, objects realizing data flows in processes are not included here
2in BPR projects, each activity includes about 4-6 additional business related entities (goal, job position, success factor, ...)

ed development of the information system (Taylor 1995;
Darnton, Darnton 1997; Partridge 1996).

The methods described here have been used to suc-
cessfully develop a wide range of systems of diverse siz-
es. In this paper, the case study of analysis and design
of software for fruit market public information system for
National Agrarian Chamber of the Czech Republic is pre-
sented.

Experience with practical projects performed in BORM
by Deloitte&Touche Czech Republic suggests that the
description of business environments necessary to
prompt new activities involves significant knowledge
based content. The systems mentioned above range
through all sizes of software development and the selec-
tion of them can be seen from the Table 1.

The method presented in this paper has proved to be
effective and beneficiary in the process of describing and
subsequently understanding how real business systems
evolve (Belin, Suchman 1997; Mellor, Shlaer 1997). Such
knowledge is the key for the success of any business and
is especially crucial for those employees whose respon-
sibility is business development.

The Business Object Relation Modelling (BORM)
method provides a tool to capture knowledge and to
present it in a such way that, the authors believe, is far
more effective than other business processes, data, or
functional modelling methods. This increase in effective-
ness is due largely to the use of a unified and simple
method for presenting all aspects of the relevant model.

To fully understand how a business works requires a
significant detailed knowledge, which can be captured in
a knowledge base. BORM provides an effective tool to
facilitate knowledge elucidation and an effective graph-

398

ical language for describing the structures and interac-
tions within the knowledge so elicitated.

One problem, common for both the designers of infor-
mation systems and knowledge elucidation, is the ‘con-
ceptual gap’ or ‘representational mismatch’, which
occurs when communicating with a user or knowledge
expert.

Goldberg (1995) uses the term ‘Concept Space’ to de-
scribe what the user/experts believe, assume or know to
be the case. The *Articulation Space’ is what the expert/
user communicates in response to the analyst’s ques-
tions. The analyst then constructs a model to feed back
to the user/expert their mental model of the concept
space, which they construct out of the information pre-
sented in the articulation space. This model is known as
the ‘Analyst Space’. The difference between this ana-
lyst’s model and the user space is the concept gap.

To a certain extent, part of this gap is unbridgeable; we
cannot easily reduce the gap between concept and arti-
culation space, as these exist in the user/expert’s head. It
is true, however, that the languages, natural and graphi-
cal, used by the analyst in representing this model are a
vital component in the user/expert’s ability to validate
this model against its own concept space. The subset of
BORM methods introduced here is, we believe, a useful
tool in closing this gap.

WHAT ARE THE PROBLEMS WITH OBJECT
ORIENTED DESIGN METHODOLOGIES?

The first and we think the major problem with Object
Oriented methodologies arises in the initial stages of

AGRIC. ECON. — CZECH, 49, 2003 (9): 397406

system development cycle (Coterrell, Hughes 1995; Can-
tor 1998; Royce 1998; Davis 1993; Kotonya, Sommerville
1999). The initial stage of any Object Oriented design
methodologies should be concerned with two tasks. The
first is the specification of the requirements for the sys-
tem. The second is the construction of an initial object
model, often called an essential object or conceptual
model built out of a set of domain specific objects known
as essential objects. Both these tasks should be carried
out with the active participation of the stakeholders, in
order to ensure that the correct system is being devel-
oped. Consequently, any tools or diagrams used at these
early stages should be meaningful to the stakeholders,
many of whom are not ‘computer system literate’.

The most common technique for requirements specifi-
cation in current object oriented methodologies is Use
Case Modelling. Indeed Use Cases are often the founda-
tion of most Object Oriented development methods (Ja-
cobson 1992). Use Case Modelling is concerned with the
identification of actors which are external entities, who
interact with the system. This means that in order to
employ Use Case Modelling, it is necessary for develop-
ers to already know the system boundary and to distin-
guish between entities, which are internal and external to
that boundary. It is our experience that the correct iden-
tification of the system boundary is a non-trivial task and
can only take place at the end of the requirements spec-
ification stage.

Use Case Modelling is essentially a text-based system,
any diagrams employed do not contain any significant
information but only identify the actors involved in each
use case. Neither is it an object-oriented process as the
Use Cases determined could be subsequently developed
in any programming paradigm. In addition, Use Case Mo-
delling is often insufficient by itself to fully support the
depths required for initial system specification. Fowler
(1999) highlights some deficiencies in the Use Case ap-
proach, suggesting that Use Case diagrams, if they are to
convey all the necessary information, need supplementa-
tion by Sequence and Activity diagrams. These modifica-
tions to Use Case Analysis would result in a number of
different diagrams that are used initially to define the in-
teraction between any proposed system and its users.
There are many views on the effectiveness of Use Cases
as a first stage in System Design. Simons and Graham
(1999) for example describe a situation where Use Case
Modelling obscures the true business logic of a system.

The BORM approach is based on the fundamental con-
cept of process modelling. This follows from the belief
that it in necessary, for the deployment of a new system,
not to view that system in isolation, but to view it in the
context of the companies total organizational environ-
ment. A new system, when introduced into an organisa-
tion, will normally totally change the way that the
organisation operates. In addition, a BORM process
model is object oriented from the beginning and is de-
fined in an easy to understand graphical notation. From
the process model, scenarios can be developed. Scenar-
ios were originally developed in OBA to capture, similar

AGRIC. ECON. — CZECH, 49, 2003 (9): 397406

information to that presented in Use Cases. A Scenario,
however, is an instance of a User Interaction whereas a
Use Case is more like a procedural description of a fype
of user interaction. Our experiences on the projects list-
ed above suggest that the process way of thinking is
more natural to business employee. Consequently, stake-
holders in the proposed system can more easily under-
stand BORM models and consequently make a greater
contribution to the correctness of the system design.

In BORM, any initial diagram supports only the prob-
lem domain specific concepts; any software-orientated
concepts are left until later in the modelling process. In
addition, in the early stages BORM uses a single diagram
that embodies the same information as the numerous di-
agrams used by other methodologies, This is an attempt
to make it easier for the user to form a complete under-
standing of the interaction of the various system com-
ponents.

In BORM, concepts and their notation change as the
development process proceeds. This is in sharp contrast
with UML, which claims to be a universal system in that
the same notation is used for analysis, design and docu-
menting the implementation. Our reasons for changing
notation are based on the observation that this universal-
ity of the UML’s notation hinders the design process. In
this, we are in broad agreement with the criticism of this
aspect of UML expressed by Simons and Graham (1999).

The second problem that we find with most develop-
ment methodologies is that, during subsequent stages,
they require a number of different diagrams to fully de-
scribe the system. Each diagram is used to model an in-
dependent aspect of the system. Thus, we have one
diagram for the objects static structure and a second one
for the state changes of particular objects. One diagram
showing the message passing between objects and a
further diagram to model the activities the system must
perform. The fundamental principle of Object oriented
systems is that of encapsulation. This means that all ob-
ject’s data values are stored in the same place as the func-
tions (methods) that manipulate them. The synergy
created by this unification of data and functionality leads
to greater understanding of the situation being modelled,
and to a correctly designed solution being developed.

Each diagram is a visual representation of an abstract
model, which exists in the brain of the analyst. Develop-
ers use diagrams to communicate with customer and oth-
er designers. They are the basis of the Analyst Space
defined earlier. If this model is object oriented in nature,
its representation should reflect it and must not require
the viewer to deduce this fact from a number of different
diagrams, each of which reveals one particular aspect of
the object nature of the model.

Finally, the modelling concepts used in most develop-
ment methodologies are used throughout the system
development cycle. Moreover, these notations tend to be
specifically designed to represent, at an abstract level,
concepts from object oriented programming languages.

For example, the models used in OMT (Rumbaugh et
al. 1999, Derr 1995) or UML (Booch et al. 1998, Rumbaugh

399

atal. 1999) can use quantifiers, link classes, external rela-
tions, aggregations, etc. While many of these concepts
are necessary for software implementation in hybrid ob-
ject-oriented programming languages such as Java, C++
or C#, they are too ‘computer-oriented’ to be useful in
capturing the primary system information. Such diagrams
are often ‘conceptually rich” and difficult for the custom-
er and other ‘non computer’ people to fully understand.
There is of course no compulsion to use these features,
however, in our experience, software designers will often
use all the facilities provided without any consideration
as to their appropriateness. The use of complex concepts
too early in the design process often compromises the
requirements determined for the system, since users find
themselves constricted by the programming nature of the
models and consequently are unable to fully articulate
their needs. In Simons and Graham (1999), speaking of
UML, it is stated that “Developers often take the most con-
crete example of notational element in use ... and retrofit
these interpretations higher up in the analysis process”.

If we compare standard Entity-Relation Diagram (ERD)
(Carteret, Vidgen 1995; Date 1995) with ‘object-class dia-
gram’ used in OMT (Derr 1995) or UML (Booch et al.
1998), we find that ERD only uses three basic, but pow-
erful concepts. Object-class diagram, on the other hand,
generally uses about twenty different concepts, spread
over a number of different levels of abstraction.

In the analysis phase, we need to acquire the best pos-
sible knowledge of the problem formulation, and there
the implementation details may cause trouble. On the
other hand, in the design phase we need to focus on im-
plementing the outputs from the analysis but we do not
need to know some aspects of the reality modeled.

Underestimation of the model differences in the indi-
vidual phases of development of an information system
results — in some instances of “real programmers” — in
such a simplification where the analysis using UML is

viewed as mere graphic representation of the future soft-
ware code — typically in C++. Analytic models are then
used not to specify the problem formulation with the
potential users of the system who are also stressed by
the complexity of the models that are presented to them.
Projects in UML very often suffer from this problem.

THE BORM APPROACH

BORM, like other OOA&D methodologies, is based on
the spiral model for the development life cycle (Eriksson,
Penker 2000). One loop of the object-oriented spiral mo-
del contains stages of strategic analysis, initial analy-
sis, advance analysis, initial design, advanced design,
implementation and testing (see Figure 1).

The first three stages are collectively refereed to as the
expansion stages. Expansion ends with the finalising of
the detailed analysis conceptual model, which fully de-
scribes the solution to the problem from the requirements
point of view (Yourdon 1995).

The remaining stages are called the consolidation stag-
es. They are concerned with the process of developing
from “expanded ideas” to a working application. During
these stages the previously completed conceptual model
is transformed, step-by-step, refined, reduced and finalised
into a software design. In contrast to other methodologies,
in BORM the object-oriented design stage is fluently con-
nected to implementation without any sharp discontinui-
ty, similar to the smooth transition between Object
Oriented Analysis and Object Oriented Design. As a con-
sequence, we can consider the program coding as at the
last and the most detailed phase of the design process.

During the progress around the loop, the developer
may undertake small excursions (little spirals out from
the main spiral) into the implementation of smaller par-
tial applications, used to develop, test and tune the pro-

Spiral Software Development Life Cycle in BORM

I'ea| W0r|d customers, Q & new developers, @A realld
managers, (¥ H : managers, WOor
problem | mwees 2@ application | e B8
. G . . application
strategic new loop implementation lep‘f; p
analysis
=
= S
g initial advanced g @dvanced
. —
& analysis design g level
o =
=)
[}
advanced advanced basic
design design level

Figure 1. BORM stages

400

AGRIC. ECON. — CZECH, 49, 2003 (9): 397406

BORM information engineering

business engineering

process modeling
(business objects)

conceptual modeling
(conceptualobjects)

software engineering

software modeling
(softwareobjects)

participant participant object object object
f N\ (modeling card)
collection collection collection
2
class class class
£)
S __states & transitions

2 c
] 2
.g' function, scenario [activity (job positions, perf. measures, devices) method \ method E
5 . goals, targets, \ N3
3| issues) N_communication message message K
3 N5
- Q
delegation A5
°
__association data flows message parameters & return values A -_g-
¢ (relationship °

tables) has-a composing A

relation dependency dependency / dependency Y

is-a hierarchy type hierachy polymorphism polymorphism A

\ inheritance inheritance /)

strategic initial || advanced initial [| advanced [| imple-
analysis analysis analysis design design mentation

description description in software

in real world related concepts

environment concepts

Figure 2. BORM evolution of concepts

gram incrementally by using previously completed

modules.

The behaviour of any profotype (in BORM we prefer
the more accurate name “deliverable™) is also interest-
ing. Every finalised application is also a deliverable and
may be used as a basis for generating further require-
ments, which, in turn, leads to a new development loop.

Every object is viewed as a machine with states and
transitions dependent on the behaviour of other objects.
Each state is defined by its semantic rule over object data
associations and each transition is defined by its behav-
iour, necessary to transform the object from its initial to
its terminal state. Consequently BORM objects have the
characteristics of Mealy-type automaton (Coterrell,
Hughes 1995). Business object diagram accents the mu-
tual relationships (communications and associations) of
states and transitions of objects in the modelled system.

In BORM (see Figure 2), it is possible for each concept
to have some of the following:

1. A Set of Predecessor Concepts from which it could be
derived by an appropriate technique and a Set of suc-
cessor concepts, which could be derived from it by an
appropriate technique. For example a conceptual ob-
ject composition from a business object association.

2. A Validity Range — the phases (of the development
process) whereit isappropriate. State—Transition dia-
grams for example are used extensively used in busi-
ness conceptual modelling but are not supported by
any current programming language.

3. A Set of Techniques and Rules, which guide the step-
by-step transformation and the concept revisions be-

AGRIC. ECON. — CZECH, 49, 2003 (9): 397406

tween the system development phases. These are the

following:

a) Object Behaviour Analysis, which is a technique
for transforming theinitial informal problem descrip-
tion into the first object-oriented representation.

b) Behavioural Constraints; which is a set of deter-
mining rules which describes the set of possible
transformation of theinitial model into more detailed
formwith precisely specified object hierarchieslike
inheritance, dependency, aggregation etc.

¢) Pattern Application which helps to synthesise the
analysis object model by theinclusion of object pat-
terns.

d) Set of Structural Transformations (Class Refactor-
ing, Hierarchies Conversions and Substitutions,
solving legacy problems solving programming en-
vironment constraints.) which areaimed at the final
transformation of the detailed design model into a
form acceptablein theimplementation environment
(programming language, database, user interface,
operating system, etc.).

CASE STUDY — COMMODITY MARKET PUBLIC
INFORMATION SYSTEM

In this part, we present the selected subset of project
documentation of this information system. All diagrams
were drawn in BORM extended standard of UML. Pro-
gram code is written in the simplified Smalltalk-80 pro-
gramming language.

401

System Processes - Objectives of Agrarian Chamber

1. to obtain governmental financial support to enable tailoring commodity
production more closely to market demands
. to convince customers that all actions are fundamentally for customer benefit
. to obtain data and money from the government to support consultancy activities for farmers
. to obtain reliable data from government sources to inform the decision making process
. to increase overall sectorial revenue
. to encourage home production of key commodities
. to monitor conditions check to loans for farmers and to lobby to improve such conditions

No o WN

OBJECT BEHAVIOR ANALYSIS

OF BUSINESS OBJECTS
MODELING CARDS
Farmer -
...... Agrarian Chamber
producefood | |
make profit lobby
mcke dedisions represent farmers
report compulsory data p_@_r_fg msurveys
...... Parliament
Loan Guarantee Board Govgrn_ment _
Intervention Board Statistical Office
Bank Research Institutions & Universitips
Agrarian Chamber
Wholesale
Retail
Commodity Exchange
Statistical Office Commodity Exchange
frade
Farmer
Food Industry
B ank Wholesale

Government

STRATEGIC ANALYSIS OBJECT BEHAVIOR ANALYSIS
OF BUSINESS OBJECTS

402

OBJECT RELATIONSHIPS
object relationship associated with
Farmer may be a member of Agrarian Chamber
Farmer produce Product
Farmer sells Product
Farmer decides to produce Product
Farmer makes Profit
Farmer may sell product to Commodity Exchange
Farmer may sell product to Food Industry
Farmer may sell product to Wholesale
Farmer may sell product to Retail
Farmer may sell product to Intervention Board
Farmer borrow the money to produce from Bank
Farmer borrow the money to produce from Loan Guarantee Board
Farmer uses info for decisions making from Agrarian Chamber
Farmer reports compulsory financial data to Statistical Office
Farmer reports compulsory financial data to Ministry of Agriculture
Agrarian Chamber has members from Farmer
Agrarian Chamber performs surveys of Farmer

AGRIC. ECON. — CZECH, 49, 2003 (9): 397406

BUSINESS OBJECTS IN AGRARIAN SECTOR
“FARMER" AND ITS RELATIONSHIP AND INFORMATION SYSTEM BOUNDARIES

Government
Intervention board Loan guarantee Bank retribuS
board NGED
@ guarantee D

Commodity

AWhole Sale
:

o
Profit

| Product | | Commodityl

Commodity Exchan | (

. . is . ion
M":)I::fo:: Agrlcultu\?\ | Commodityl I Member F ocessio
6Qurve Product | | Profit | | Productl | Commodityl
:

Qllection

Farmer

| Argumentsl | Commodityl Retail
| Memberl < may be sell bu
Product | | Profit
Research Institiﬁs
format
data S e N\ Customer
- —— y !
llectios” “Tcommoaiy] | OF Agrarian
Universities C h argn ber Product | [Spending

| State Institutions ” Private Institutionsl

BUSINESS OBJECTS - INITIAL ANALYSIS
OBJECT LIFE CYCLES (RULES & EVENTS)

Farmer is kind of . | Customer
7

Cproduce> Retalil buy
buy [_/

Product Life Cycle
produced
sell i i sell
by in Retail Food

Farmer
Industry
food
@ process
in
V sell Internal |

in Commodity Market produced
Exchange or in by

Intervention Board Food Industry
Product in Internal Market
buy buyer
Commodity | | Intervention is a producer Product
Exchange Board in
Food Industry
Food
Product Industry
in
buy Wholesale food
Food process
Industry Wholesale
in commodity)
produced in retail exchange or in in internal produced by product in product in
by farmer intervention market food industry food industry wholesale
board

AGRIC. ECON. — CZECH, 49, 2003 (9): 397406 403

PRODUCT - DESIGN
OBJECT RELATIONSHIP DIAGRAM

OBJECT HIERARCHY
Product
Set name
producer
expiration Date / Date
origin form

{#liquid , #loose , #solid , #splittable}

trade Events

Sorted Collection

Processed Product

| Cropped Product |

| Animal Product |

TRADE TRANSACTION - DESIGN
OBJECT RELATIONSHIP DIAGRAM
BEHAVIORAL VIEW

aSet of

| Trade Transaction

TradeEvents
{true false)

is Acceptable To: a Set

[te | te maySatisfy: self] :

A a Setincludes:

minPrice
maySatisfy: aTE
(aTE isSupply

H A A
_ product
or: [product ~= aTE product])
ifTrue: [*false].
AaTE price >= minPrice

seller

SortedCollection ’ﬁh
— SortedCollection 2
3 by Date Trade Event by Date T :
© \ g
= i amount ! 2
gT supplies i e i demands E

e ¥ N

Demand maySatisfy: aTE
(aTE isDemand
maxPrice or: [product ~= aTE product])
A A ifTrue: [*false].
A i = 1
product aTE price <= maxPrice

buyer

Product

| Farmer |

| Food Industry |

| Retail|

THE ADVANTAGES OF BORM
1. BORM follows the Process-oriented approach, which
has proved to be beneficial in software development.
Generally, the process-oriented approach lead to afaster
and more comprehensive analysis of the problem be-
ing solved.

404

2. In our experience, stakeholders from the problem do-
main are able to understand the BORM approach very
quickly, normally a one hour introduction at the start
of analysis is enough)

3. In Deloitte & Touche (Prague office) a business con-
sulting team hasworked for the past threeto four years
using the BORM system as well as ARIS and Ratio-

AGRIC. ECON. — CZECH, 49, 2003 (9): 397406

nal’s Objectory/Unified method. They have found
BORM to bein average 3—4 timesfaster in carrying out
the analysis phase compared to other methods.

4. The methodology is easily acceptable to domain ex-
perts, analysis consultants and developers. Because
BORM is based on a step-by-step transformation of
the model and in each phase only alimited and consis-
tent subset of BORM concepts are used.

5. BORM hasbeen used enthusiastically by Smalltalk and
Java programmers and by non-relational object data-
base programmers. Onefeature of BORM they find at-
tractive is the way it exploits collection concepts not
just classes and the way that these collection classes
are seamlessly integrated into the development envi-
ronment. (Compare with multi-objectsin UML).

6. BORM hasmoreobject hierarchies(polymorphism, is-a,
dependency ...) than other methodswhich usually only
provide concepts supported by programming languag-
es. Usually only object inheritance is supported.

These last two features provide a much richer language
with which to express modelling ideas.

FINAL COMMENTS

Today, when improved visual programming tools com-
bined with the support of rapid application development
environments are available, it would appear that the
whole software development process is becoming easi-
er. This statement is true, however, only for those cases
where the complexity of the solution and of users’ re-
quirements is relatively simple. Business systems devel-
oped for real companies often have a much higher level
of complexity which make development much more diffi-
cult. Consequently, it is essential (from the software de-
veloper s viewpoint) to improve the initial phases of
software development.

Until recently, it was correctly assumed that conceptu-
al modelling tools and techniques were used through all
stages of project development, from the initial phase to
the eventual implementation. However, the position of
conceptual modelling is currently being used solely in the
implementation phase, as a result of the evolution of
software development tools. The analysis is now being
performed using newly developed techniques and “busi-
ness” objects modelling tools.

We believe that Object-oriented programming has
changed not only the system development but also all of
computer science (Booch 1994, Cox 1986). In software
development, any team must be well organised, with clear
and common goals. Managers of such projects must be
clear about the potential benefits as well as understand-
ing the management Object-oriented development.

Object-oriented programming can help in the develop-
ment of a large system by significantly reducing the de-
veloping and maintenance time. But the adoption of
Object-oriented programming requires considerable de-
velopments not only in technical knowledge but also
managerial and cultural realignment; such changes can

AGRIC. ECON. — CZECH, 49, 2003 (9): 397406

only be achieved by suitable training combined with the
use of well designed and easy to use software develop-
ment tools like those described here.

CONCLUSION

Currently there is not a ‘standard solution’ to the prob-
lem of gathering and representing business knowledge.
Our approach, described here, developed out of business
experience and enhanced by graphic models with clear
connection towards the system development seems to
be a promising candidate for such a standard. The nota-
tion we propose may serve not only as a tool for formal
representation of modelled information, but also, as we
have demonstrated, as a useful tool for communicating
with developers and experts from the problem domain
(managers, employees, etc.). The key advantages of BORM
are its graphic models of knowledge representation, which
provides easy and effective feedback. There are also clear
rules how to progress through the system development
process using this knowledge representation.

REFERENCES

Bahrami (1999): Object Oriented System Development.
McGraw-Hill; ISBN: 0-071-16090-6.

Beck K. (1997): Smalltalk Best Practice Patterns. Prentice
Hall; ISBN 0-13-476904-X.

Bellin D., Suchman S.S. (1997): The CRC Card Book. Addi-
son-Wesley; ISBN 0-201-89535-8.

Blaha M., Premerlani W. (1998): Object Oriented Modelling
and Design for Database Applications. Prentice Hall; ISBN
0-13-123829-9.

Booch G. (1994): Object-Oriented Analysis and Design with
Applications, Second Edition. Benjamin Cummings; ISBN
0-8053-5340-2.

Booch G., Rumbaugh J., Jacobson 1. (1998): The Unified
Modelling Language User Guide. Addison-Wesley; ISBN
0-201-57168-4.

Cantor M. (1998): Object-Oriented Project Management with
UML. J. Wiley and Sons; ISBN 0-471-25303-0.

Carteret C., Vidgen R. (1995): Data Modelling for Informa-
tion Systems. Pitman Publishing; ISBN 0-273-60262-4.
Catell R.G.G. (1994): The Object Database Standard —ODMG93.

Morgan Kaufman Publishers; ISBN 1-55860-302-6.

Coterrell M., Hughes B. (1995): Software Project Manage-
ment. Thomson Computer Press; ISBN 1-850-32190-6.

Cox B.J. (1986): Object Oriented Programming — An Evolu-
tionary Approach. Addison-Wesley; ISBN 0-201-10393-1.

Darnton G., Darnton M. (1997): Business Process Analysis.
International Thomson Publishing; ISBN 1-861-52039-5.

Date C.J. (1995): An Introduction to Database Systems (6th
Edition). Addison-Wesley; ISBN: 0-201-82458-2.

Davis A. (1993): Software Reqiurements — Objects, Func-
tions and States. Prentice Hall; ISBN 0-13-562174-7.

Derr K.W. (1995): Applying OMT — A Practical Guide to
Using the Object Modelling Technique. Sigs Books; ISBN
1-884842-10-0, Prentice Hall; ISBN 0-13-231390-1.

405

Eriksson H.E., Penker M. (2000): Business Modelling with
UML. J. Wiley and Sons; ISBN 0-471-29551-5.

Fowler M., Scott K. (1999): UML Distilled (2nd Edition).
Addison-Wesley; ISBN 0-201-65783-X.

Goldberg A., Kenneth R.S (1995): Succeeding with Objects —
Decision Frameworks for Project Management. Addison
Wesley; ISBN 0-201-62878-3.

Gray P.M.D, Kulkarni Krishnarao G., Paton N.W. (1992):
Object-Oriented Databases — A Semantic Data Model Ap-
proach. Prentice Hall; ISBN 0-13-630203-3.

Henderson-Sellers B. (1991): A Book of Object-Oriented
Knowledge. Prentice Hall; ISBN 0-13-059445-8.

Hopkins T., Horan B. (1995): Smalltalk — an introduction to
application development using Visual Works. Prentice Hall;
ISBN 0-13-318387-4.

Hunt J. (1997): Smalltalk and Object Orientation. Springer;
ISBN 3540761152.

Ince D. (1991): Object-Oriented Software Engineering. McGraw
Hill; ISBN 0-07-707402-5.

Jacobson I. (1992): Object-Oriented Software Engineering —
A Use Case Driven Approach. Addison-Wesley; ISBN 0-
201-54435-0.

Knott R.P., Merunka V., Polak J. (2000): Process Modelling
for Object Oriented Analysis using BORM Object Behav-
ioural Analysis. In: Proceedings of Fourth International
Conference on Requirements Engineering ICRE 2000. Chi-
cago, IEEE Computer Society Press; ISBN 0-7695-0565-1.

Kotonya G., Sommerville 1. (1999): Requirements Engineer-
ing: Processes and Techniques. J. Wiley and Sons.

Mellor S., Shlaer S. (1997): Object Lifecycles: Modelling the
World in States. ISBN 0136299407.

Meyer B. (1988): Object-Oriented Software Construction.
Prentice Hall; ISBN 0-13-629049-3.

Partridge C. (1996): Business Objects — Reengineering for
Reuse. Butterworth-Heinemann; ISBN 0-7506-2082-X.
Royce W. (1998): Software Project Management: A Unified

Framework. Addison-Wesley; ISBN 0-201-30958-0.

Rumbaugh J., Blaha M., Premerlani W., Eddy F., Lorensen W.
(1991): Object-Oriented Modelling and Design. Prentice Hall;
ISBN 0-13-630054-5.

Rumbaugh J., Jacobson 1., Booch G. (1999): The Unified
Modelling Language Reference Manual. Addison-Wesley;
ISBN 0-201-30998-X.

Satzinger J.W, Orvik T.U. (1996): The Object-Oriented Ap-
proach — Concepts, Modelling and System Development.
Boyd & Fraser; ISBN 0-7895-0110-4.

Shriver B., Wegner P. (1987): Research Directions in OOP.
MIT Press; ISBN 0-262-19264-0.

Simone A. J. H., Graham 1. (1999): 30 Things that go wrong in
Object Modelling with UML 1.3, chapter 17. In: Kilov H.,
Rumpe B., Simmonds 1. (eds.): Behavioral Specifications of
Businesses and Systems. Kluwer Academic Publishers:
237-57.

Taylor D.A. (1995): Business Engineering with Object Tech-
nology. John Wiley; ISBN 0-471-04521-7.

Yourdon E. (1995): Mainstream Objects — An Analysis and
Design Approach for Business. Prentice Hall; ISBN
0-13-209156-9.

Arrived on 29" August 2002

Contact address:

Ing. Vojtéch Merunka, M.Sc., PhD., Ceska zemédélska univerzita v Praze, Kamycké 129, 165 21 Praha 6-Suchdol,

Ceska republika
e-mail: merunka@pef.czu.cz

406

AGRIC. ECON. — CZECH, 49, 2003 (9): 397406

