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Abstract: The intensification of agricultural practices in Bangladesh has caused significant environmental challenges.
This has also undermined farmers' economic sustainability, mainly due to the excessive use of subsidised chemical fer-
tilisers. To address these issues and align with the United Nations Sustainable Development Goals (SDGs), Bangladesh
has prioritised the adoption of sustainable farming practices, including the recommended fertiliser application (RFA).
However, whether the adoption of RFA ensures economic sustainability remains uncertain. This study evaluates how
the Bangladesh Rice Research Institute's (BRRI) proposed RFA affects fertiliser use and cost-efficiency. Drawing on five
years (2017-2021) of panel data from 2 025 households across three acidic soil regions in Dinajpur, the findings reveal
that RFA adoption reduces fertiliser use by 12% while improving cost efficiency by 4.9-5.1%. These results highlight
the potential of RFA to mitigate environmental degradation while enhancing economic outcomes, thereby supporting
the SDG agenda. In light of these benefits, the study offers key insights for policymakers and development practition-
ers, emphasising the need for targeted interventions to accelerate RFA adoption and promote sustainable agriculture.

Keywords: Bangladesh; control function; correlated random effects; efficiency; stochastic frontier cost function; sus-
tainable agriculture

Agriculture plays a crucial role in global food pro-
duction and economic development, particularly
in developing countries, where it remains a key source
of livelihood. The transition from traditional to inten-
sified agricultural practices, spurred by the Industrial
Revolution, has significantly supported food security
and reduced rural poverty (Xie et al. 2019; Guo and
Wang 2021). However, the environmental consequenc-
es of such intensification — especially the overreliance
on chemical inputs such as fertilisers — have become
increasingly apparent, resulting in soil degradation,
biodiversity loss, and pollution (Shah and Wu 2019;

Kishore et al. 2021; Huan and Zhan 2022). In par-
ticular, the indiscriminate use of chemical fertilisers
in rice production presents a major challenge in Asia,
adversely affecting both soil health and the wider en-
vironment. Bangladesh, a country heavily dependent
on rice cultivation, exemplifies this issue. To boost pro-
ductivity and efficiency, the Bangladeshi government
provides fertiliser subsidies, which have helped achieve
higher rice productivity (Pearson et al. 2018). However,
this policy has also led to increased fertiliser consump-
tion (Pearson et al. 2018; Sunny et al. 2024), making
Bangladesh the world's 12th-largest fertiliser consumer,
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with a usage rate of over 390 kg per hectare (World Bank
2025). While these efforts have enhanced agricultural
output, they have also led to imbalanced fertiliser appli-
cation, causing inefficiencies, environmental degrada-
tion, and undermining farmers' economic sustainability
(Rahman and Zhang 2018; Sunny et al. 2022a).

Recognising these challenges, the adoption of sus-
tainable agricultural practices has become a national
priority. In line with the United Nations' Sustainable
Development Goals (SDGs), Bangladesh has launched
initiatives to promote the use of recommended ferti-
liser application (RFA) tailored to specific crops. This
sustainable practice aims to optimise fertiliser use,
enhance crop productivity, and reduce environmental
damage (MOA 2020; FPMU 2021; Sunny et al. 2024,).

Similar strategies have been successfully adopted
in other countries where excessive fertiliser use has
impeded agricultural sustainability. For example, Ger-
many, Egypt, and Ethiopia have implemented recom-
mended fertiliser application (RFA) programmes, which
have reduced fertiliser consumption while improving
efficiency (Jate 2010; Shaaban et al. 2018; Wako and
Usmane 2020; El-Nasharty et al. 2022). In India, site-
specific fertilisation techniques have reduced nitrogen
use by 18%, increased production by 4% to 12%, and
decreased greenhouse gas emissions by up to 22.5%
(Sapkota et al. 2021). Similarly, studies from Pakistan
demonstrate that balanced fertiliser use enhances profit-
ability (Yousaf et al. 2020). Research in China highlights
improvements in soil organic matter, enzyme activity,
and bacterial abundance through balanced fertilisation
(Xiao et al. 2022). Findings from Indonesia and Vietnam
underscore the potential of balanced fertilisation to in-
crease productivity and improve soil properties (Hin-
dersah et al. 2022; Trinh et al. 2023).

In Bangladesh, farmers who adopt RFA practices
report higher yields and profit margins compared
to those using traditional fertiliser methods. For in-
stance, Mamun et al. (2018) examined various ferti-
liser management guidelines for Boro rice cultivation
in the Barisal district in the south of the country,
while Afrad et al. (2018) focused on the Sunamganj
district in the northeast. However, these studies not
only explored different regions but also relied on sin-
gle-year data and small sample sizes. Although Sunny
et al. (2022c; 2024) investigated the impact within the
same geographical context, their research examined
joint technology adoption — specifically, the integra-
tion of solar irrigation with recommended fertiliser
use — and its effects on production costs and return
on investment.
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This article addresses a notable gap in the existing
literature by providing new insights into whether the
adoption of recommended fertiliser application (RFA)
positively or negatively impacts fertiliser use and cost
efficiency. To our knowledge, no prior studies have ex-
amined this relationship using panel data in the context
of Bangladesh. By deepening the understanding of the
factors influencing RFA adoption and the associated
opportunities, this research aims to offer valuable evi-
dence to support policy decisions promoting sustain-
able agricultural practices in Bangladesh.

Moreover, farmers' decision-making is shaped by their
ability to evaluate evidence and weigh alternative op-
tions (Bukchin and Kerret 2020; Yeo and Keske 2024).
Therefore, the actual benefits of adopting RFA in the
Bangladeshi context require further exploration. This
is especially important given that yield improvements
do not always lead to reduced fertiliser use or enhanced
efficiency. Consequently, a more thorough investigation
of the real-world impacts of RFA adoption is warranted.

Given that fertiliser constitutes a significant share
of production costs for water-intensive crops such
as BRRI dhan29 rice (Mainuddin et al. 2021), the cost-
effectiveness of RFA could be a key factor in farmers'
adoption decisions. If RFA proves more economi-
cal in terms of fertiliser consumption and efficiency
compared to traditional methods, it could encourage
farmers to optimise other inputs and manage costs
more effectively (Emerick et al. 2016; Abay et al. 2018;
Buisson et al. 2024). Such changes may lead to more
efficient resource allocation, better financial out-
comes for farmers, and contribute to the development
of a more sustainable rice production system. In light
of the above, this article seeks to answer the following
research question:

What factors influence the adoption of the Bangla-
desh Rice Research Institute's (BRRI) recommended
fertiliser dosage (RFA), and how does RFA adop-
tion affect fertiliser consumption and cost efficiency
among BRRI dhan29 rice growers?

This study hypothesises that farmers adopting BR-
RI-recommended RFA will reduce fertiliser use and
achieve greater efficiency than non-adopters. In the
long term, the adoption of balanced fertilisation prac-
tices is expected to enhance not only economic sus-
tainability but also broader agricultural sustainability
objectives (Dobermann et al. 2022; Pandian et al. 2024).
If supported, the adoption of BRRI-recommended RFA
could foster more responsible farming, help mitigate
climate change, and improve food security, thereby ad-
vancing SDGs 12, 13, and 2.
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MATERIAL AND METHODS

Study area, sampling procedure, and data source.
This research focuses on the Barind Tract, spe-
cifically the Dinajpur region, the largest of Bangla-
desh's sixteen districts in the northwest. This area
is of particular interest for several reasons. Firstly,
its tropical wet-dry climate results in limited rainfall,
contributing to drought, food insecurity, and poverty.
Secondly, rice cultivation is predominant, with the
‘BRRI dhan29' variety widely adopted during the
Boro season, also known as the dry season (BRRI
2019). Most importantly, given the region's acidic
soils and the limited research on fertiliser application
practices and their efficacy during the Boro season,
it is essential to assess the long-term impact of BRRI-
recommended fertiliser application on agricultural
productivity (Islam et al. 2017; Shirazy et al. 2018;
SRDI 2020; Islam et al. 2022). For effective policy-
making, it is crucial to understand how sustainable
fertiliser management practices vary across different
agro-ecological conditions.

As this research is based on survey data, a random
sampling technique was employed to select three sub-
districts — Birganj, Khanshama, and Kaharol — from
a total of thirteen. The sample size was determined
using the approach of Krejcie and Morgan (1970), ap-
plying a 95% confidence level, one degree of freedom,
a 50% maximum population variance, and a 5% mar-
gin of error. From a population of 643 431 (BBS 2015),
the required sample size was calculated to be 405
(135 farmers per sub-district), with an additional + 5%
contingency to account for unforeseen issues. Data
were collected using a structured questionnaire be-
tween 2017 and 2021 through face-to-face interviews
conducted annually from December to June, aligning
with the Boro season (BBS 2020). All participating
farmers consented to annual interviews until 2021.
The interview schedule was translated into the local
language and pre-tested before finalisation. The ques-
tionnaire covered various topics, including farm-
ers' demographic and socioeconomic characteristics,
adoption or non-adoption behaviour, input usage and
production costs, total rice output, knowledge sources,
and soil-related factors.

Following five years of data collection, a balanced
panel comprising 2 025 observations (405 households
over 5 years) was constructed. Farmers were classified
based on their adherence to the fertiliser application
rates recommended for 'BRRI dhan29' rice, as out-
lined in the BRRI manual. These recommended rates

range from 336.8 to 524 kg per hectare, including
224.5-299.4 kg/ha of urea, 52.4-104.8 kg/ha of TSP
(triple super phosphate), and 59.9-119.8 kg/ha
of MOP (muriate of potash) (Sunny et al. 2024). Farm-
ers who adhered to these guidelines were categorised
as adopters, while those who did not were considered
non-adopters.

Research procedures. This study employs the cor-
related random effects (CRE) model with a control
function (CF) approach, alongside stochastic frontier
analysis (SFA) with endogeneity correction, to assess
the impact of RFA adoption on fertiliser use and cost
efficiency. For cost efficiency estimation, SFA is pre-
ferred over data envelopment analysis (DEA) as it ac-
counts for random noise and allows for statistical
hypothesis testing. Endogeneity within the stochas-
tic frontier model is addressed using the approach
of Karakaplan and Kutlu (2017a, 2017b, 2017c), ensur-
ing unbiased inefficiency estimates. A Cobb—Douglas
(CD) production function is selected over translog
or quadratic specifications due to its robustness against
multicollinearity and its stable estimation properties.
To compare efficiency between adopters and non-
adopters, a fractional response model (fracreg) is used,
incorporating the Mundlak (1978) approach to reduce
bias. While the selected methods effectively address
both endogeneity and heterogeneity, the detailed ana-
lytical procedures and the rationale for choosing these
methods are provided below.

The impact of RFA adoption on fertiliser use.
The impact of RFA adoption on fertiliser use is mod-
elled as follows:

Yy =By +BiRFA;, +B, X, +v; +¢, (1)

where: Y, — the total amount of fertiliser (F) applied
by farmer i at time # RFA,, — the farmers' adoption status
of RFA; X, — a vector of predictor variables; v; — the unob-
served, time-invariant household effects; 3, — the intercept
term; B, — the effect of RFA adoption; B, — the influence
of predictor variables; ¢, — the error term.

Utilising pooled ordinary least squares (OLS) to es-
timate Equation (1) presumes there is no correlation
between error terms and the regressors. However, this
approach fails to account for the panel structure of the
data, potentially leading to inefficiencies due to intra-
household error correlation (Tambo et al. 2020). A ran-
dom effect (RE) model can be used but it holds strong
assumption that the regressors are uncorrelated with
the error terms (Wooldridge 2010). If farmers' deci-
sions to adopt RFA are not random, this assumption
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is violated, leading to biased estimates (Tambo
et al. 2020; Sunny et al. 2024). Although a fixed effects
(FE) estimator could be applied, the model may encoun-
ter issues due to incidental parameters (Greene 2004;
Wooldridge 2010; Tambo et al. 2020). Besides, other
approaches such as difference-in-differences (DID) and
propensity score matching (PSM) could also be consid-
ered. However, DID relies on the assumption of parallel
trends (Marcus and SantAnna 2021), which does not
hold in this context, whereas PSM fails to account for
unobserved heterogeneity (Nimmo et al. 2022).

Given these limitations, the CRE model proposed
by Mundlak (1978) is used. While CRE approach ef-
fectively addresses unobserved heterogeneity, it does
not resolve endogeneity (Wooldridge 2010; Tambo
et al. 2020). Therefore, a two-stage estimation proce-
dure combining the CRE model with the CF approach
is employed. This estimation procedure requires
at least one instrumental variable (IV) that is strongly
and partially correlated with RFA,, but uncorrelated
with the unobservables affecting the outcome vari-
ables (Smith and Blundell 1986; Wooldridge 2010;
Tambo et al. 2020). The IV selected for this analysis
is 'fertiliser information seeking state’, based on the
premise that farmers typically seek advice on input us-
age from trusted individuals. This variable is expected
to influence RFA adoption decision, while not directly
affecting the outcome variables (Kassem et al. 2021;
Luo et al. 2022; Wu 2022; Sunny et al. 2024).

Consequently, the first stage equation, revised from
Equation (1), can be expressed as:

REA,, =B, X,, +B, IV +B3 X, +v, +g, (2)

where: X ; — the time averages of the time-varying covar-
iates, with associated parameters B,; //" — the instrumen-
tal variable (fertiliser information-seeking state).

In the second stage, the generalised residual (R,,)
obtained from the first-stage regression [Equation (2)],

is incorporated into the outcome of Equation (3):
Y, =By +BIRFA, +By X, +Bs X, +By R, +v, +&;  (3)

where: ]%it — the generalized residual; B, — captures the
effect of R;, after correcting for endogeneity by includ-
ing the generalized residual Ril in the model.

The significance of R, would indicate that the RFA
adoption variable is endogenous (Wooldridge 2010;
Tambo et al. 2020).

To ensure robustness, we employ the two-stage
residual inclusion (2SRI) approach, a method used
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to address endogeneity. This approach has been ap-
plied in other empirical studies (Terza et al. 2008; Ma
and Zhu 2020; Zhang et al. 2023), demonstrating its
effectiveness in handling endogeneity concerns.

RFA adoption impact on cost efficiency. To un-
derstand how RFA adoption impacts efficiency levels,
two commonly used methods are SFA and DEA. Coe-
1li (1995) compared these two methods and noted that
the main strengths of SFA lie in its ability to account
for stochastic noise and its capacity to permit statistical
testing of hypotheses related to production structure
and the degree of inefficiency.

In contrast, DEA is a deterministic method that attrib-
utes all deviations from the production frontier to inef-
ficiencies. As a result, DEA estimates are more sensitive
to measurement errors or other forms of noise in the
data. Moreover, SFA is particularly advantageous for
evaluating efficiency in agricultural production (Rein-
hard et al. 2000; Bai et al. 2019; 2020).

Given these considerations, this study adopts the sto-
chastic frontier cost function model proposed by Karaka-
plan and Kutlu (2017a, 2017b, 2017c), which addresses
the issue of endogeneity. A previous study by Islam and
Fukui (2018) also applied this method to assess the ef-
ficiency of rice production systems in Bangladesh. Fol-
lowing their approach, we employ the CD stochastic
frontier cost function in this study.

The CD functional form is chosen over translog
or quadratic alternatives because the latter are more
susceptible to multicollinearity when variables differ
in nature. Additionally, the CD function yields more
stable estimates even when basic assumptions are vio-
lated and is suitable for use across a range of datasets
(Azad and Rahman 2017; Tenaye 2020).

Drawing from Karakaplan and Kutlu (2017a, 2017b,
2017c¢), our stochastic frontier model for panel data
is expressed as follows:

Yy =xp,B+vy —suy, (4)
vy =Qu8+¢,
g, Q12 &, 0 I o OuP
= ~ N ’ ’ 2
Vit Vit 0 va Gv

— ’ *
Mit - h(xm't(pu )Mi
s=-1 for cost functions

where: Y, — the logarithm of the cost of the i" produc-
tive unit at time #; x,;, — the vector of endogenous and
exogenous variables; B — in equation 4 represents the
vector of coefficients associated with the explanatory
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variables; x;, — a px1 vector of all endogenous varia-
bles (excluding Y,); Q, =1, ®Q); ;q;, isa rx1 vector
of all exogenous variables; v;, and g; - two-sided
error terms; 8 — the coefficient vector linking exogenous

; — the stand-

variables to the endogenous regressors; g,

ardised first-stage residuals; Q — the variance-covari-
ance matrix of g,; - — the variance of v, ; p — the
vector representing the correlation between €, and v,, ;
I, — identity matrix used to build the instrument matrix;
u,; 20 — one-sided error term capturing the ineffi-
ciency; I, = h(xb’”.t(pu ) >0;x
and variables excluding the constant; uf — a producer-

’

+. — avector of exogenous
specific component independent from v, , and g;,; ¢,
— the vector of coefficients in the inefficiency equation.

Hence, u;, and v; can be correlated with x;, , yet
u;, and v, are conditionally independent given x;,
and ¢;, . Similarly, u;, and g, are conditionally inde-
pendent given x;, and g,,.

By applying a Cholesky decomposition to the vari-
ance-covariance matrix corresponding to (&',,v; ),
the decomposition can be expressed as:

éit _ [p 0 gll‘ (5)
Vi | |0, o,1-p'p || Wi

where: €, and W, ~N (0,1) are independent; W, — an
independent standard normal term from the Cholesky
decomposition, representing the part of v;, uncorre-
lated with &, .

The frontier equation thus can be expressed as:

o 1~ o
Yy =x4B+0,p'€ +wy —suy =x,,p+

+ (xiz - QizS)’n te;

— _ . _ '\ — T .
where: €, =w; —suy ; w, =c J1-p'pw, =c,W, ;

-1
2 .
_ c,Q2%p . w;; — the component of v that is inde-
J1-p'p
pendent of £;, scaled by its standard deviation; o, the
standard deviation of w,.

This setup is important because ¢; is condition-
ally independent of the regressors given X; and g, .
In Equation (7), the term (x;, —Q;,8)'n serves as a bias
correction term (Karakaplan and Kutlu 2017a, 2017b,
2017c¢). We assume that:

uf~N+<u,Gi) o

hl% = exp(xuitq)u )

where: y — the mean of the inefficiency term ; ; Gfl -
the variance of #, across producers.

A vector of observations corresponding to the panel
I will be represented by a subscript i . For example,
h = (h“,hi2 ...... /- )' isa T, x1 vector, where T; is the
number of time periods for panel i. The log-likelihood
function of panel i is given by:

InL;=lnl; , +Inl; (8)

i, ylx

where:

1 AN W
lan,x:—E[Tiln(htcw)+—2+(—2— o Bk

Sy G, O

o, =—m
s 271 2
Guhi.hL +Gw

_ ’ ’
ey =Y, —x,B-gm

&y =x; — Q0

where: @ — the standard normal cumulative distribution
function (Karakaplan and Kutlu 2017a, 2017b, 2017c).
We predict the cost efficiency, EFF,, =exp(-u;, ), by:

Gi* ( “i* }
G
Mix
G

where: ¢ — the standard normal probability density

eXP(_E[”it |€i]) =exp| —/n | Ky + ©)

function.

Compared to standard CF methods (i.e. the two-stage
approach), this model is statistically more efficient, does
not require a bootstrap procedure to correct standard er-
rors, and estimates parameters in a single stage (Karaka-
plan and Kutlu 2017a, 2017b, 2017c). In this model,
it is necessary to include at least one IV; as noted earlier,
the chosen variable is farmers' information-seeking state'.
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Moreover, the model facilitates the standard Durbin—
Wu—Hausman test for endogeneity, conducted by as-
sessing the joint significance of the components of the n
term. If n) is jointly significant, it indicates the presence
of endogeneity in the model. Conversely, if ) is not jointly
significant, the correction term is unnecessary, and effi-
ciency can be estimated using traditional frontier models
(Karakaplan and Kutlu 2017a, 2017b).

In a cost frontier model, the condition of linear ho-
mogeneity of degree one must be satisfied; that is,

(j=B,; =1. This assumption is met by normalising

the total cost and input prices by the price of one of the
inputs (Jehle and Reny 2011; Islam and Fukui 2018).
In this study, the seed price () is considered as the nu-
meraire, used to normalise the total cost and prices
of the other inputs.

Based on above discussion, the CD stochastic fron-
tier cost function model, using the logarithmic form
of all variables, is expressed as follows:

C, K, L
ln[;j} =B, +B,In [?‘;jﬂg In [S—:j+

it L2 o] 4 o] T s

it it S[[ (10)
MPF, I
+B¢ InTF;, In [—”J +B,1n (ij +
Sit Sit
T P,
+BgIn| = |+ By In| =& [+B,0InQ,, +v,, +11;,
Si[ Si[
The inefficiency model is expressed as follows:
u, =o,+0,RFA, +c,AG, +55AS, +6,ED;, +
+0:FL;, +o4LS;, +o,LT,, +5,SFP, +5,SWR,, + (11)

+6,SWR;, +0,)IMO;, +5,InOE;, +5,,CO,, +¢,

where: C — total production cost; K, L, LB, S UE TF,
MPE I, T, P and Q - the costs of other input variables,
with S used for the normalisation process; RFA, AG,
AS, ED, FL, LS, LT, SFP, SWR, IMO, OE and CO - the
inefficiency variables, a full description of all vari-
ables is provided in Table 1; p and o — the parameters
to be estimated; i and ¢ - the /™ farmer and the ¢/t
observation, respectively; v;, — the error term; u;, —
the farmer-specific characteristics related to cost inef-
ficiency (Karakaplan and Kutlu 2017a, 2017b, 2017c),
as the focus of this study is to understand the impact
of RFA adoption on cost efficiency, the RFA adop-
tion variable is included in the inefficiency term
(u;, ) model; €, — the error term in inefficiency model.
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The variables used in Equations (10 and 11) are trans-
formed using the natural logarithm to correct for skewed
distributions and to mitigate the influence of large outli-
ers. Logarithmic transformation helps to normalise the
distributions, making them more appropriate for regres-
sion analysis and reducing the distortion caused by ex-
treme values. Additionally, it enhances interpretability,
as coefficients in log-linear models can be expressed
in percentage terms — a feature particularly valuable
in economic and efficiency analysis.

However, categorical variables used in the inef-
ficiency or other models are not log-transformed,
as they do not follow a continuous distribution where
such a transformation would be meaningful. Likewise,
efficiency scores — bounded between 0 and 1 — are re-
tained in their original scale, as the logarithm of zero
is undefined.

To compare which cohort (adopters or non-adop-
ters) demonstrated superior efficiency levels, we em-
ployed a range of analytical approaches. Given that the
efficiency variable is constrained within the interval (0,
1), and considering the nature of the dependent vari-
able, we adopted a fractional response model (fracreg)
incorporating the Mundlak device to mitigate potential
bias (Papke and Wooldridge 2008).

Alternative approaches — such as Tobit regression,
the two-part (hurdle) model, generalised linear models
(GLM) with logit or probit links, and OLS with a log-
odds transformation — have notable limitations. The To-
bit model assumes a normally distributed latent variable,
which may not be appropriate for efficiency scores. OLS
with a log-odds transformation risks generating predic-
tions outside the valid range and requires adjustment for
values at 0 or 1, whereas the fractional response model
naturally ensures valid predictions. Compared with
GLMs using logit or probit links, the fractional response
model imposes fewer distributional assumptions, offer-
ing greater flexibility when analysing real-world efficien-
cy data. The two-part (hurdle) model is also unsuitable
in this context, as efficiency scores are continuously dis-
tributed and do not exhibit a spike at 0 or 1.

Moreover, the fractional response model provides
more intuitive interpretation of coefficients than OLS,
which expresses effects in log-odds rather than actual
efficiency scores. Given its capacity to handle frac-
tional data effectively while maintaining interpretabil-
ity and avoiding restrictive assumptions, the fractional
response model is the most appropriate choice for this
study. The model specification is presented as follows:

Y, =9 + 9, RFA,, +9,X,, + 9, X, +v, +¢, (12)
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Table 1. Variables used in different models

Variables

Description

RFA (recommended fertiliser application)
Production (C)
Capital (K)

Land (L)

Labour (LB)

Seed (S)

Urea (UF)

TSP (TF)

MOP (MPF)

Tilling (7)

Pesticide (P)
Irrigation (/)

Rice Produce (Q)
Fertiliser (F)

Age (4G)

Age square (4S5)
Education (ED)
Household size (HS)
Family labour (FL)
Land size (LS)

Land typology (LT)
Land ownership (LO)
Soil water retention (SWR)

1 = farmer has adopted RFA, 0 = otherwise
production cost (USD/ha)

capital assets (i.e. machinery) cost after depreciation (USD)
land rent (USD/ha)

labour wage (USD/man-days)

seed price (USD/kg)

urea fertiliser price (USD/kg)

TSP fertiliser price (USD/kg)

MOP fertiliser price (USD/kg)

mechanical ploughing price (USD/ha)
pesticide and insecticide price (USD/ha)
irrigation cost (USD/ha)

total rice production (kg/ha)

total amount of fertiliser uses (kg/ha)

age of the respondents in years

squared value of the respondents age

1 = farmer is literate, 0 = otherwise

1 = more than 4 family members, 0 = otherwise
number of active labours in household
land area (ha)

1 = mid-highland, 0 = low or mid-low

1 = farmer owned, 0 = otherwise

1 = farmland can hold water long, 0 = otherwise

Soil fertility perception (SFP)
Knowledge of RFA (KF)
Credit obtainability (CO)
Off-farm earning (OE)

Irrigation machine ownership (IMO)

1 = farmer perceives their farmland as fertile, 0 = otherwise

1 = farmers know about recommendation doses, 0 = otherwise
1 = farmers obtain credit during cropping season, 0 = otherwise
log value of secondary income (USD)

1 = farmers own irrigation machine, 0 = otherwise,

1 = farmers seek information of fertiliser doses from others,
0 = otherwise

Instrumental variable (/V): fertiliser information
seeking state (FIS)

MOP - muriate of potash; TSP — triple super phosphate; ha — hectare

Source: Author's elaboration

where: Y, — the cost efficiency score; X;, — other

explanatory variables; X,

; — the time averages of the

time-varying covariates with associated parameters 3;;
v; — the time-invariant unobserved household effects,
assumed to be normally distributed with zero mean and
constant variance; 9, — the intercept term; 9, — the
effect of adoption on fertiliser use; 3, — the effects
of other explanatory variables; ¢;, — the error term.
For robustness checks, beta regression is employed,
as it effectively models dependent variables within the
(0,1) range while accounting for varying dispersion
(Pirani et al. 2018; Cribari-Neto 2023). This approach

enhances the reliability of the results by ensuring con-
sistency across different modelling frameworks. Beta
regression serves as a useful complement to the frac-
tional response model, preserving the fractional nature
of efficiency scores while offering an alternative speci-
fication. The combined use of the fractional response
model as the primary method and beta regression for
robustness strengthens the comprehensiveness and
credibility of the analysis.

Variables description. All variables used in this
study are presented in Table 1 and are selected based
on existing research and academic literature (Azad and
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Rahman 2017; Islam and Fukui 2018; Tambo et al. 2020;
Sunny et al. 2022a, 2022b, 2022c¢).

RESULTS AND DISCUSSION

Descriptive statistics. Table 2 compares adopters
and non-adopters of RFA across agronomic, demo-
graphic, and institutional characteristics. While sev-
eral indicators appear similar across groups, notable
differences highlight distinct behavioural and re-
source patterns. Adopters exhibit slightly lower av-
erage production costs (458.49 vs 477.52) and nearly
identical levels of capital and land use. Labour input,

Table 2. Descriptive statistics of variables

Variables Mean SD
Adopt Non-adopt Adopt Non-adopt

C 458.49 477.52 46.08 43.96
K 350.92 351.72 53.20 53.44
L 205.50 205.65 55.49 55.43
LB 3.00 3.00 0.51 0.50
S 0.40 0.39 0.10 0.10
UF 0.17 0.17 0.02 0.02
TF 0.21 0.21 0.02 0.02
MPF 0.31 0.31 0.06 0.06
T 42.26 42.00 13.36 13.10
P 42.12 42.23 13.39 13.27
I 147.61 134.13 40.63 25.89
Q 6 071.16 6 166.86 474.32 633.24
F 437.85 505.99 53.49 103.33
AG 45.15 43.21 9.44 10.37
AS 2127.46 1974.05 894.22 981.54
ED 0.86 0.87 0.35 0.34
HS 0.45 0.48 0.50 0.50
FL 1.15 1.15 0.50 0.42
LS 0.36 0.44 0.34 0.27
LT 0.10 0.56 0.30 0.50
LO 0.96 0.90 0.20 0.30
SWR 0.80 0.26 0.40 0.44
SEP 0.36 0.30 0.48 0.46
KF 0.35 0.30 0.48 0.46
CO 0.54 0.69 0.50 0.46
OE 5.87 5.77 0.43 0.43
IMO 0.43 0.56 0.49 0.50

Variables as explained in Table 1.

Source: Author's elaboration
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seed, pesticide, and tillage use are consistent across
groups, while irrigation intensity is notably higher
among adopters (147.61 vs 134.13), reflecting more
proactive water management. Fertiliser component us-
age remains unchanged; however, adopters apply less
total fertiliser (437.85 vs 505.99) with lower variation,
indicating more targeted application. Although non-
adopters report marginally higher yields (6 166.86
vs 6 071.16), adopters show more stable output with
a lower standard deviation.

Demographic characteristics differ modestly. Adop-
ters are marginally older (45.15 vs 43.21), with a higher
age-squared value, suggesting greater farming experi-
ence. Education, household size, and reliance on family
labour are broadly similar across groups.

Regarding resource endowments, adopters cultivate
smaller plots (0.36 ha vs 0.44 ha) but enjoy higher land
ownership rates (0.96 vs 0.90). Land typology values
indicate that non-adopters face greater fragmentation
(0.56 vs 0.10). Adopters also benefit from stronger soil
water retention (0.80 vs 0.26) and slightly more favour-
able soil fertility perceptions (0.36 vs 0.30).

Institutionally, adopters demonstrate greater aware-
ness of RFA (0.35 vs 0.30) but have less access
to credit (0.54 vs 0.69), suggesting that adoption
is not credit-driven. Irrigation machinery ownership
is more common among non-adopters (0.56 vs 0.43),
reflecting different capital strategies. Finally, off-
farm income is nearly identical across groups (5.87
vs 5.77), suggesting that reliance on non-agricultural
earnings does not differ meaningfully between adop-
ters and non-adopters.

RFA adoption impact on farmers' fertiliser use
amount. Table 3 presents the results of the main
model — the CRE probit model with a CF approach —
alongside the robustness check using the 2SRI model.
In the first stage of both models, the adoption of RFA
is significantly influenced by several factors. Land
typology shows a negative effect (-0.073, P < 0.10),
indicating that certain land types are less conducive
to RFA adoption. This may be attributed to variations
in soil characteristics or environmental constraints
in these areas. This finding is particularly relevant,
as Boro rice farming requires flooded fields. Leakage
issues on comparatively higher land impede the ability
to retain ponded water, resulting in fertiliser wastage
and increased fertiliser use (Pearson et al. 2018). Soil
water retention demonstrates a substantial positive
effect (0.076, P < 0.05), suggesting that farmers with
better water-retaining soils are more likely to adopt
RFA. Prior studies have shown that soil retaining
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Table 3. Impact of RFA adoption on fertiliser use amount in CRE-CF and 2SRI model
CRE with CF 2SRI
First stage Second stage First stage Second stage
Variables RFA adoption log fertiliser RFA adoption log fertiliser
(0/1) quantity (kg/ha) (0/1) quantity (kg/ha)
dy/dx (SE) dy/dx (SE) dy/dx (SE) dy/dx (SE)
—0.120%** —0.120***
RFA Adopt N (0.022) - (0.022)
0.000 ~0.002 0.000 ~0.001
Age (4G) (0.002) (0.004) (0.002) (0.004)
0.000 0.000 0.000 0.000
Age square (45) (0.000) (0.000) (0.000) (0.000)
. -0.005 -0.020* -0.005 -0.020*
Education (D) (0.010) (0.012) (0.010) (0.012)
. -0.003 0.005 -0.003 0.005
Household size (F5) (0.006) (0.006) (0.006) (0.006)
. 0.012 0.013 0.012 0.013
Family labour (FL) (0.011) (0.008) (0.011) (0.008)
. 0.001 0.054*** 0.001 0.054***
Land size (LS) (0.009) (0.015) (0.009) (0.015)
. -0.003 -0.025 -0.003 -0.025
Land ownership (LO) (0.017) (0.018) (0.017) (0.018)
-0.073* 0.031 -0.073* 0.031
Land typology (LT) (0.038) (0.020) (0.038) (0.020)
. . . -0.002 0.002 -0.002 0.002
Soil fertility perception (SFP) (0.005) (0.006) (0.005) (0.006)
. . 0.076** —0.155%** 0.076** —0.155%**
Soil water retention (SWR) (0.038) (0.013) (0.038) (0.013)
N . . -0.006 —0.031%** -0.006 —0.031%**
Irrigation machine ownership (/MO) (0.007) (0.010) (0.007) (0.010)
0.006 -0.012 0.006 -0.012
Knowledge of RFA (KF) (0.008) (0.010) (0.008) (0.010)
. 0.013 0.010* 0.013 0.010*
Off-farm earning (OF) (0.010) (0.006) (0.010) (0.006)

. . . —-0.005 -0.003 —0.005 -0.003
Credit obtainability (CO) (0.006) (0.002) (0.006) (0.002)
Instrumental variable (17): 0.066** B 0.066** B
fertiliser information seeking state (F1S) (0.031) (0.031)

. 0.025%** 0.025%**
Residual - (0.005) - (0.005)
Time dummy yes yes yes yes
Mean of time varying variables included yes yes no no
Observations 2 025 2025 2025 2025

BT
’

the mean of time-varying variables was included in the model but not reported for brevity

and ***significance at 0.1, 0.05 and 0.01 levels, respectively; values in parentheses are delta-method standard errors;

2SRI - two-stage residual inclusion; CF — control function; CRE — correlated random effects; RFA — recommended

fertiliser application

Source: Author's elaboration
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a balanced amount of water supports crop growth and
maintains soil organic matter. In contrast, soils with
low water-holding capacity require greater inputs
of organic and chemical fertilisers (Dong et al. 2012).
The instrumental variable, farmers' fertiliser informa-
tion-seeking behaviour, displays a positive relation-
ship with RFA adoption.

The second-stage results from both the CRE-CF and
2SRI models are highly consistent. Most notably, RFA
adoption exhibits a significant negative effect on fer-
tiliser use, reducing it by 12% (coefficient: -0.120,
P <0.01) in both models.

Several control variables also display significant ef-
fects on fertiliser use. For instance, education level
shows a marginally significant negative effect (-0.020,
P < 0.10), suggesting that more educated farmers tend
to use less fertiliser. Previous studies have indicated
that education enhances farmers' allocative efficiency
by enabling them to think critically and utilise informa-
tion sources effectively, thereby restricting the quantity
of fertiliser applied to some extent (Tan et al. 2022).
Land size shows a strong positive association (0.054,
P <0.01), implying that larger farms tend to use more
fertiliser per hectare. In contrast, soil water retention
shows a substantial negative effect (-0.155, P < 0.01),
consistent with the idea that soils with better moisture
capacity make more efficient use of nutrient (Sunny
et al. 2022c). Similarly, ownership of irrigation ma-
chinery is associated with lower fertiliser use (-0.031,
P <0.01). This finding aligns with earlier studies, which
argue that the high fixed costs associated with machin-
ery ownership can constrain the availability of work-
ing capital for other inputs (Schimmelpfennig 2016).
Besides, off-farm earnings (0.010, P < 0.10) positively
influence adoption, indicating that households with
off-farm income sources are more likely to adopt
RFA, possibly due to greater financial capacity or re-
duced risk aversion. This aligns with previous find-
ings suggesting that adopting new technologies often
incurs additional costs (Rahman et al. 2021). Finally,
the significance of the residual term (0.025, P < 0.01)
in both models confirms the presence of endogeneity,
thereby validating the instrumental variable approach.
The consistency of results across both models — despite
differences in specification — strengthens the robust-
ness and credibility of the findings.

Estimation of overall cost efficiency. Table 4 pre-
sents the estimation results of both the endogenous
and exogenous cost stochastic frontier production
functions using the Cobb-Douglas specification.
The model statistics for the endogeneity test of RFA
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adoption are significant (x> = 4.33, P < 0.05), indicat-
ing that the endogenous model provides more appro-
priate estimates for inference, particularly regarding
the impact of RFA adoption on efficiency. In validat-
ing the IV, we found it statistically significant at the
1% level, with a z-value of 11.51 (Supplementary Ta-
ble S1), thereby justifying the use of an endogeneity
correction model. Previous studies have noted that
for a single endogenous variable, a commonly used
rule of thumb for IV validation is a z-value exceeding
V10 = 3.16 (or F-value > 10). Therefore, our instrument
satisfies this criterion and qualifies as a strong instru-
ment (Karakaplan and Kutlu 2017a; Islam and Fukui
2018). We also confirmed instrument validity through
the 2SLS results presented in Supplementary Table S2.
Both the endogeneity tests (Durbin and Wu-Hausman)
and the instrument strength (F-statistics) indicate that
our instrument meets the conventional thresholds,
qualifying it as a strong instrument. Furthermore, the
efficiency score indicates that, after accounting for en-
dogeneity, the mean cost efficiency slightly decreased
from 0.845 7 to 0.842 8.

The estimation results from both the exogenous and
endogenous stochastic frontier models yield several
important insights into agricultural production effi-
ciency. All input variables are statistically significant,
though their magnitudes vary. Capital demonstrates
the strongest influence, with an elasticity of 0.286
and 0.287 in the exogenous and endogenous models,
respectively (P < 0.001). Irrigation and tilling emerge
as the next most influential inputs, with coefficients
ranging from 0.145 to 0.160 and 0.147 to 0.149, respec-
tively (P < 0.001). TSP fertiliser also exerts a substantial
effect (0.127-0.139, P < 0.001), while other fertilisers
(MOP and urea) show more moderate influences. No-
tably, pesticide use demonstrates the smallest elasticity
among all inputs (0.012), suggesting a relatively minor
contribution to production outcomes. This finding
holds important implications for input optimisation
and cost management strategies.

The inefficiency effects model reveals several signifi-
cant determinants of cost inefficiency. RFA adoption
demonstrates a strong negative association with inef-
ficiency (ranging from —0.257 to —0.649, P < 0.001), in-
dicating that adopters tend to operate more efficiently.
Household size shows a consistent positive relationship
with inefficiency (0.212-0.239, P < 0.005), suggest-
ing that larger households may encounter difficulties
in optimal resource allocation.

Moreover, soil water retention in the exogenous mod-
el exhibits a significant negative effect (-0.400, P < 0.05),
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Table 4. Estimated results of the stochastic cost frontiers with inefficiency effects model

. Exogenous model Endogenous model

Variables
estimate SE estimate SE

Capital (K) 0.286%** 0.012 0.287%** 0.014
Land (L) 0.032%** 0.006 0.033*** 0.007
Labour (LB) 0.039%** 0.010 0.040%** 0.011
Urea (UF) 0.042*** 0.009 0.050*** 0.011
TSP (TF) 0.139%** 0.012 0.127%** 0.015
MOP (MPF) 0.062%** 0.011 0.067*** 0.013
Pesticide (P) 0.012%* 0.004 0.012% 0.005
Irrigation (/) 0.145%** 0.014 0.160%** 0.015
Tilling (7) 0.149%** 0.008 0.147%** 0.009
Rice produce (Q) 0.079%** 0.018 0.061** 0.019
Year dummy —0.038%** 0.002 —-0.040** 0.002
Constant 2.915%** 0.088 2.919%** 0.098
Inefficiency variables:
Constant —4.549%** 0.547 —4.776%** 0.540
RFA adoption —-0.256*** 0.068 —0.649*** 0.185
Age (4G) 0.023 0.018 0.030% 0.017
Age squared (4S) 0.000 0.000 —-0.000 0.000
Education (ED) 0.218 0.205 0.216 0.205
Household size (HS) 0.239%** 0.070 0.212%* 0.068
Soil water retention (SWR) -0.400* 0.157 -0.228 0.176
Soil fertility perception (SFP) ~0.014 0.018 ~0.042+ 0.023
Irrigation machine ownership (IMO) 0.531%** 0.149 0.465"* 0.152
Off-farm earning (OF) 0.013 0.050 0.049 0.051
Knowledge of RFA (KF) 0.065 0.150 0.068 0.150
Dependent variable: In (6®_v)
Constant —7.633%** 0.037 - -
Dependent variable: In (6®_w)
Constant - - —7.646*** 0.037
Endogeneity test:
5 RFA adoption - - 0.043* 0.021
5 endogeneity test - - x> =433 P =0.037
Log likelihood 394741 3225.08
Mean efficiency 0.8457 0.842 8
Median efficiency 0.8443 0.8417
Number of observations 2025 2025

, **, * and tsignificance at 0.1%, 1%, 5% and 10% levels, respectively
MOP — muriate of potash; RFA — recommended fertiliser application; TSP — triple super phosphate

Source: Author's elaboration
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indicating that rice cultivation on high water-retaining
land reduces inefficiency. This finding underscores the
link between water-holding capacity and soil health.
Previous studies have indicated that soils with adequate
water retention support crop growth and preserve soil
organic matter (Dong et al. 2012). In addition, owner-
ship of irrigation machinery is positively and significant-
ly associated with inefficiency (0.465-0.531, P < 0.05).
This aligns with earlier studies that highlight the sub-
stantial fixed costs of machinery ownership, which may
constrain capital availability for other essential inputs
in the production process (Schimmelpfennig 2016).
Besides, farmers age is positively associated with inef-
ficiency (0.030, P < 0.10). Finally, the soil fertility variable
is negatively and significantly associated with inefficien-
¢y (-0.037, P < 0.10). This result is consistent with the
findings of Salam et al. (2021), which indicate that rice
productivity depends on improved soil fertility.

Impact of RFA adoption on cost efficiency. Ta-
ble 5 presents the estimated impact of RFA adoption
on efficiency using two distinct estimation approaches.
The primary model employs the fractional response
model, while the robustness check utilises the beta re-
gression model. Both methodologies incorporate CRE
probit framework with a CF, thereby enhancing the ro-
bustness and reliability of the analysis. The results dem-
onstrate consistent findings across the two estimation
methods, reinforcing the validity of the conclusions.
RFA adoption exhibits a positive and highly signifi-
cant effect on efficiency in both models. The magni-
tude of this effect ranges from 0.049 in the fractional
response model to 0.051 in the beta regression model.
This consistency suggests that RFA adoption improves
efficiency by approximately 4.9% to 5.1%, reflecting
a meaningful enhancement in farming productivity.
These results are in line with earlier research, which
indicated that balanced nutrient management con-
stitutes a cost-effective and environmentally friendly
strategy for achieving sustainable intensive rice crop-
ping systems (Shankar et al. 2021).

Among the control variables, the inverse relation-
ship between education and efficiency in the beta re-
gression model aligns with recent research findings
(Seok et al. 2018; Sunny et al. 2022a). While this out-
come may appear to contradict human capital theory,
it highlights the phenomenon of education-driven oc-
cupational shifts from agricultural to non-agricultural
sectors. In Bangladesh, rural youth increasingly pursue
public or private sector employment, largely due to the
perceived social prestige associated with these careers
(Sunny et al. 2022a). As a result, their engagement

12

https://doi.org/10.17221/473/2024-AGRICECON

Table 5. Adoption impact of RFA on cost efficiency

Fractional regression

Beta regression

Variables

dy/dx

SE

dy/dx

SE

RFA Adopt
Age (4G)
Age Square
(4S)

Education
(ED)

Household
size (HS)

Family
labour (FL)

Land size
(LS)
Land

ownership
(LO)

Land typol-
ogy (LT)

Soil fertility
perception
(SFP)

Soil water
retention
(SWR)

Irrigation
machine
ownership
(IMO)

Knowledge
of RFA
(KF)

Off-farm
earning
(OE)

Credit
obtainabil-
ity (CO)

Time
dummy

Mean

of time
varying
variables
Observa-
tions

0.049**
0.001

—-0.000

-0.013

~0.013*

0.027%**

-0.007

0.001

~0.016*

0.013%**

0.005

—0.030***

—-0.006

—-0.015**

-0.011**

yes

yes

2025

0.006
0.002

0.000

0.009

0.005

0.007

0.007

0.008

0.007

0.005

0.007

0.006

0.005

0.006

0.005

0.051%*
0.001

—-0.000

-0.022*

~0.016*

0.035%**

-0.013

0.003

~0.015%

0.014**

0.008

—0.030***

-0.010

-0.016**

-0.013%

yes

yes

2025

0.006
0.002

0.000

0.011

0.007

0.009

0.010

0.009

0.008

0.006

0.008

0.007

0.006

0.007

0.007

*, ** and ***significance at 0.1, 0.05 and 0.01 levels, respec-
tively; the mean of time-varying variables was included

in the model but not reported for brevity

RFA — recommended fertiliser application

Source: Author's elaboration

in agriculture is often part-time, necessitating reliance
on hired labour. Goodwin and Mishra (2004) argue
that improved educational attainment facilitates occu-
pational mobility away from agriculture.
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The negative marginal effect coefficients in both
models indicate a decline in efficiency when household
size exceeds four members. Supporting research sug-
gests that larger household consumption needs often
compete with the optimal allocation of farm inputs
(Sunny et al. 2022a). In contrast, family labour has
a significant positive effect in both models, implying
that households with higher levels of family labour
participation exhibit lower inefficiency. Prior research
has shown that family labour availability eases capital
constraints and provides vital support during peak ag-
ricultural periods (Gebeyehu 2016).

Soil fertility shows a positive and significant rela-
tionship with efficiency, reinforcing earlier findings
that link improved soil fertility with enhanced pro-
ductive performance (Fan et al. 2005). Conversely,
both off-farm income and access to credit during culti-
vation periods are negatively associated with efficiency.
This finding is noteworthy, as credit availability does
not always lead to optimal input use (Rizwan et al. 2019;
Ouattara et al. 2020; Sunny et al. 2023).

Similarly, ownership of irrigation machinery is associ-
ated with lower cost efficiency (—0.030, P < 0.01). This
finding is consistent with earlier studies, which highlight
that diesel-based irrigation systems are more expensive
and therefore constrain the availability of capital for
other essential inputs in the production process (Sunny
et al. 2024). Finally, farmers cultivating highland areas
exhibit lower efficiency levels, a result that accords with
previous research suggesting that highland cultivation
leads to greater input wastage (Sunny et al. 2022b).

The results of this study demonstrate that the adop-
tion of the recommended fertiliser application dosage
(RFA) significantly reduces fertiliser use and improves
cost efficiency in rice cultivation, particularly among
farmers growing the BRRI dhan29 variety in the Dina-
jpur region of Bangladesh. Adoption of RFA led to a 12%
reduction in fertiliser use among adopters compared
to non-adopters. This decline in usage mitigates the
risk of environmental contamination through nutri-
ent runoff — especially relevant in Bangladesh's acidic
soil regions, where fertiliser over-application has been
a common practice. By reducing the amount of fertiliser
applied, RFA helps to lower nutrient loads entering wa-
ter bodies, thereby decreasing eutrophication, and pro-
tecting aquatic ecosystems. Furthermore, the improved
soil management practices associated with RFA help
prevent soil degradation and support soil health, foster-
ing a more sustainable agricultural environment.

Economically, RFA adoption has been shown to en-
hance cost efficiency. Empirical findings from both

fractional and beta regression models indicate that
adopters attain greater cost efficiency than non-adop-
ters, with efficiency gains ranging from 4.9% to 5.1%.
This economic benefit translates into reduced in-
put costs, thereby increasing the profitability of rice
farming. Moreover, cost savings associated with RFA
adoption strengthen farmers' resilience to fluctuations
in fertiliser prices — an especially valuable outcome
in a developing country such as Bangladesh. Notably,
only 8.7% of small and marginal farmers in the coun-
try have access to finance from the state-owned Bang-
ladesh Krishi Bank, whose lending policies are often
misrepresented by commercial banks or poorly under-
stood by farmers (FAO 2023).

These results support the alternative hypothesis
that farmers adopting the BRRI-recommended RFA
can reduce fertiliser usage and achieve greater ef-
ficiency compared to non-adopters. This finding
is consistent with earlier research highlighting the
dual benefits of RFA: reducing environmental harm
while improving economic outcomes. For example,
Jate (2010) found that balanced mineral fertiliser
adoption yielded the highest nutrient use efficiency
in Germany. Similarly, Afrad et al. (2018) observed
that the use of fertilisers recommended by the Bang-
ladesh Agricultural Research Council (BARC) pro-
duced the highest benefit-cost ratio (BCR) for rice
farmers in Bangladesh's Haor region. In addition,
Chen et al. (2021) revealed that the adoption of bal-
anced fertilisation practices reduced excessive ferti-
liser use by between 35% and 93% in China.

The new evidence presented in this study provides
a strong rationale for promoting RFA as a sustainable
agricultural practice. It supports both national and
international sustainability goals, and the robustness
of the findings — evident in their consistency across
multiple estimation methods — reinforces the reliabil-
ity of these conclusions.

CONCLUSION

This study, based on survey data from 2 025 house-
holds collected between 2017 and 2021, investigates the
factors influencing the adoption of BRRI-recommended
fertiliser dosages. It also evaluates the impact of RFA
adoption on fertiliser consumption and cost efficiency,
with a particular focus on economic sustainability.

The findings indicate that RFA adoption is influenced
by several factors, including the availability of family
labour, soils with good water retention, and off-farm
income. However, farmers cultivating rice in highland
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areas are less inclined to adopt RFA. To address this
challenge, further research is needed to refine fertiliser
application guidelines tailored to highland soil condi-
tions. In addition, the development and promotion
of location-specific fertiliser management techniques
could enhance nutrient uptake efficiency and encour-
age broader adoption among farmers.

Impact analysis confirms that RFA adoption results
in a 12% reduction in fertiliser use and a 4.9% to 5.1%
improvement in cost efficiency compared to non-
adopters. These findings highlight both the environ-
mental and economic advantages of RFA adoption,
demonstrating its potential to promote sustainable
agricultural practices while advancing several SDGs.
Specifically, the reduction in fertiliser use supports
SDG 12 (responsible consumption and production)
by promoting efficient resource use and minimising
environmental harm. It also contributes to SDG 13
(climate action) by reducing greenhouse gas emis-
sions associated with excessive fertiliser application,
and supports SDG 2 (zero hunger) by preserving soil
health and ensuring sustainable food production. Fur-
thermore, the cost efficiency gains align with SDG 8
(decent work and economic growth) by strengthening
farmers' financial resilience and enhancing livelihoods,
while also supporting SDG 9 (industry, innovation and
infrastructure) by encouraging advancements in agri-
cultural productivity and resource management.

This study represents the first longitudinal investiga-
tion into the impact of RFA adoption on fertiliser use
and cost efficiency, offering novel insights that extend
current knowledge. The findings present compelling
evidence in favour of RFA as a viable practice for sus-
tainable rice cultivation. However, transitioning from
traditional fertiliser application methods to more sus-
tainable practices may be slow unless farmers perceive
clear and long-term benefits. Therefore, beyond target-
ed initiatives such as field demonstration programmes,
efforts must also focus on addressing farmers limited
scientific knowledge. Notably, nearly 13% of farm-
ers in the sample are illiterate, which poses a barrier
to understanding and adopting improved fertiliser
techniques. Moreover, as observed during the survey,
farmers tend to seek information from non-experts
such as fertiliser sellers rather than trained extension
personnel. These non-expert sources may lack techni-
cal knowledge or may have commercial incentives that
discourage optimal application, potentially hinder-
ing widespread RFA adoption. Addressing this issue
requires strengthening extension services, improving
training programmes for both farmers and fertiliser
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vendors, and leveraging peer influence by encouraging
early adopters to serve as role models.

While this study makes a significant contribu-
tion to understanding the impact of RFA adoption
on fertiliser use and cost efficiency, these findings are
somewhat limited due to their site-specific nature.
To improve the generalisability of results, future re-
search should encompass a broader range of agricul-
tural zones, crop varieties, and soil types. Additionally,
tackling socio-economic barriers, evaluating the long-
term effects of RFA on soil health, and assessing the
effectiveness of district-level initiatives through ad-
vanced modelling and robust monitoring frameworks
will be essential to developing comprehensive strate-
gies for sustainable agriculture in Bangladesh. Future
studies should also consider employing methodologies
such as randomised control trials or DID approaches
to measure outcomes before and after intervention,
providing a more rigorous assessment of the impact
of RFA adoption. Ultimately, fostering collaboration
among researchers, policymakers and farmers is vital
to ensuring that RFA adoption leads to long-term sus-
tainability and resilience in agriculture. By integrating
scientific advancements with practical knowledge and
targeted policy support, the agricultural sector can
move towards a more efficient, climate-resilient and
economically viable future.
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