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Abstract: The intensification of agricultural practices in Bangladesh has caused significant environmental challenges. 
This has also undermined farmers' economic sustainability, mainly due to the excessive use of subsidised chemical fer-
tilisers. To address these issues and align with the United Nations Sustainable Development Goals (SDGs), Bangladesh 
has prioritised the adoption of sustainable farming practices, including the recommended fertiliser application (RFA). 
However, whether the adoption of RFA ensures economic sustainability remains uncertain. This study evaluates how 
the Bangladesh Rice Research Institute's (BRRI) proposed RFA affects fertiliser use and cost-efficiency. Drawing on five 
years (2017–2021) of panel data from 2 025 households across three acidic soil regions in Dinajpur, the findings reveal 
that RFA adoption reduces fertiliser use by 12% while improving cost efficiency by 4.9–5.1%. These results highlight 
the potential of RFA to mitigate environmental degradation while enhancing economic outcomes, thereby supporting 
the SDG agenda. In light of these benefits, the study offers key insights for policymakers and development practition-
ers, emphasising the need for targeted interventions to accelerate RFA adoption and promote sustainable agriculture.
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Agriculture plays a  crucial role in  global food pro-
duction and economic development, particularly 
in developing countries, where it remains a key source 
of livelihood. The transition from traditional to inten-
sified agricultural practices, spurred by the Industrial 
Revolution, has significantly supported food security 
and reduced rural poverty (Xie et  al.  2019; Guo and 
Wang 2021). However, the environmental consequenc-
es of such intensification – especially the overreliance 
on chemical inputs such as  fertilisers – have become 
increasingly apparent, resulting in  soil degradation, 
biodiversity loss, and pollution (Shah and Wu 2019; 

Kishore et  al.  2021; Huan and Zhan 2022). In  par-
ticular, the indiscriminate use of  chemical fertilisers 
in rice production presents a major challenge in Asia, 
adversely affecting both soil health and the wider en-
vironment. Bangladesh, a  country heavily dependent 
on rice cultivation, exemplifies this issue. To boost pro-
ductivity and efficiency, the Bangladeshi government 
provides fertiliser subsidies, which have helped achieve 
higher rice productivity (Pearson et al. 2018). However, 
this policy has also led to increased fertiliser consump-
tion (Pearson et  al.  2018; Sunny et  al.  2024), making 
Bangladesh the world's 12th-largest fertiliser consumer, 
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with a usage rate of over 390 kg per hectare (World Bank 
2025). While these efforts have enhanced agricultural 
output, they have also led to imbalanced fertiliser appli-
cation, causing inefficiencies, environmental degrada-
tion, and undermining farmers' economic sustainability 
(Rahman and Zhang 2018; Sunny et al. 2022a).

Recognising these challenges, the adoption of  sus-
tainable agricultural practices has become a  national 
priority. In  line with the United Nations' Sustainable 
Development Goals (SDGs), Bangladesh has launched 
initiatives to  promote the use of  recommended ferti-
liser application (RFA) tailored to specific crops. This 
sustainable practice aims to  optimise fertiliser use, 
enhance crop productivity, and reduce environmental 
damage (MOA 2020; FPMU 2021; Sunny et al. 2024). 

Similar strategies have been successfully adopted 
in  other countries where excessive fertiliser use has 
impeded agricultural sustainability. For  example, Ger-
many, Egypt, and Ethiopia have implemented recom-
mended fertiliser application (RFA) programmes, which 
have reduced fertiliser consumption while improving 
efficiency (Jate 2010; Shaaban et  al.  2018; Wako and 
Usmane 2020; El-Nasharty et  al.  2022). In  India, site-
specific fertilisation techniques have reduced nitrogen 
use by  18%, increased production by  4% to  12%, and 
decreased greenhouse gas emissions by  up  to  22.5% 
(Sapkota et  al.  2021). Similarly, studies from Pakistan 
demonstrate that balanced fertiliser use enhances profit-
ability (Yousaf et al. 2020). Research in China highlights 
improvements in  soil organic matter, enzyme activity, 
and bacterial abundance through balanced fertilisation 
(Xiao et al. 2022). Findings from Indonesia and Vietnam 
underscore the potential of balanced fertilisation to in-
crease productivity and improve soil properties (Hin-
dersah et al. 2022; Trinh et al. 2023).

In Bangladesh, farmers who adopt RFA practices 
report higher yields and profit margins compared 
to  those using traditional fertiliser methods. For  in-
stance, Mamun et al.  (2018) examined various ferti-
liser management guidelines for Boro rice cultivation 
in  the Barisal district in  the south of  the country, 
while Afrad et  al.  (2018) focused on  the Sunamganj 
district in  the northeast. However, these studies not 
only explored different regions but also relied on sin-
gle-year data and small sample sizes. Although Sunny 
et al. (2022c; 2024) investigated the impact within the 
same geographical context, their research examined 
joint technology adoption – specifically, the integra-
tion of  solar irrigation with recommended fertiliser 
use – and its effects on production costs and return 
on investment.

This article addresses a  notable gap in  the existing 
literature by providing new insights into whether the 
adoption of recommended fertiliser application (RFA) 
positively or negatively impacts fertiliser use and cost 
efficiency. To our knowledge, no prior studies have ex-
amined this relationship using panel data in the context 
of Bangladesh. By deepening the understanding of the 
factors influencing RFA adoption and the associated 
opportunities, this research aims to offer valuable evi-
dence to support policy decisions promoting sustain-
able agricultural practices in Bangladesh.

Moreover, farmers' decision-making is shaped by their 
ability to  evaluate evidence and weigh alternative op-
tions (Bukchin and Kerret 2020; Yeo and Keske 2024). 
Therefore, the actual benefits of  adopting RFA in  the 
Bangladeshi context require further exploration. This 
is  especially important given that yield improvements 
do not always lead to reduced fertiliser use or enhanced 
efficiency. Consequently, a more thorough investigation 
of the real-world impacts of RFA adoption is warranted.

Given that fertiliser constitutes a  significant share 
of  production costs for water-intensive crops such 
as BRRI dhan29 rice (Mainuddin et al. 2021), the cost-
effectiveness of RFA could be a key factor in farmers' 
adoption decisions. If  RFA proves more economi-
cal in  terms of  fertiliser consumption and efficiency 
compared to traditional methods, it could encourage 
farmers to  optimise other inputs and manage costs 
more effectively (Emerick et al. 2016; Abay et al. 2018; 
Buisson et al. 2024). Such changes may lead to more 
efficient resource allocation, better financial out-
comes for farmers, and contribute to the development 
of a more sustainable rice production system. In light 
of the above, this article seeks to answer the following 
research question:

What factors influence the adoption of the Bangla-
desh Rice Research Institute's (BRRI) recommended 
fertiliser dosage (RFA), and how does RFA adop-
tion affect fertiliser consumption and cost efficiency 
among BRRI dhan29 rice growers?

This study hypothesises that farmers adopting BR-
RI-recommended RFA will reduce fertiliser use and 
achieve greater efficiency than non-adopters. In  the 
long term, the adoption of balanced fertilisation prac-
tices is  expected to  enhance not only economic sus-
tainability but also broader agricultural sustainability 
objectives (Dobermann et al. 2022; Pandian et al. 2024). 
If supported, the adoption of BRRI-recommended RFA 
could foster more responsible farming, help mitigate 
climate change, and improve food security, thereby ad-
vancing SDGs 12, 13, and 2.
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MATERIAL AND METHODS

Study area, sampling procedure, and data source. 
This research focuses on  the Barind Tract, spe-
cifically the Dinajpur region, the largest of  Bangla-
desh's sixteen districts in  the northwest. This area 
is  of  particular interest for several reasons. Firstly, 
its tropical wet-dry climate results in limited rainfall, 
contributing to drought, food insecurity, and poverty. 
Secondly, rice cultivation is  predominant, with the 
'BRRI dhan29' variety widely adopted during the 
Boro season, also known as  the dry season (BRRI 
2019). Most importantly, given the region's acidic 
soils and the limited research on fertiliser application 
practices and their efficacy during the Boro season, 
it is essential to assess the long-term impact of BRRI-
recommended fertiliser application on  agricultural 
productivity (Islam et  al.  2017; Shirazy et  al.  2018; 
SRDI 2020; Islam et  al.  2022). For  effective policy-
making, it  is  crucial to  understand how sustainable 
fertiliser management practices vary across different 
agro-ecological conditions.

As this research is based on survey data, a random 
sampling technique was employed to select three sub-
districts – Birganj, Khanshama, and Kaharol – from 
a  total of  thirteen. The  sample size was determined 
using the approach of Krejcie and Morgan (1970), ap-
plying a 95% confidence level, one degree of freedom, 
a 50% maximum population variance, and a 5% mar-
gin of error. From a population of 643 431 (BBS 2015), 
the required sample size was calculated to  be  405 
(135 farmers per sub-district), with an additional ± 5% 
contingency to  account for unforeseen issues. Data 
were collected using a  structured questionnaire be-
tween 2017 and 2021 through face-to-face interviews 
conducted annually from December to  June, aligning 
with the Boro season (BBS 2020). All  participating 
farmers consented to  annual interviews until 2021. 
The  interview schedule was translated into the local 
language and pre-tested before finalisation. The ques-
tionnaire covered various topics, including farm-
ers' demographic and socioeconomic characteristics, 
adoption or non-adoption behaviour, input usage and 
production costs, total rice output, knowledge sources, 
and soil-related factors.

Following five years of  data collection, a  balanced 
panel comprising 2 025 observations (405 households 
over 5 years) was constructed. Farmers were classified 
based on  their adherence to  the fertiliser application 
rates recommended for 'BRRI dhan29' rice, as  out-
lined in  the BRRI manual. These recommended rates 

range from 336.8 to  524 kg per hectare, including 
224.5–299.4 kg/ha of  urea, 52.4–104.8 kg/ha of  TSP 
(triple super phosphate), and 59.9–119.8 kg/ha 
of MOP (muriate of potash) (Sunny et al. 2024). Farm-
ers who adhered to these guidelines were categorised 
as adopters, while those who did not were considered 
non-adopters.

Research procedures. This study employs the cor-
related random effects (CRE) model with a  control 
function (CF) approach, alongside stochastic frontier 
analysis (SFA) with endogeneity correction, to  assess 
the impact of RFA adoption on fertiliser use and cost 
efficiency. For  cost efficiency estimation, SFA is  pre-
ferred over data envelopment analysis (DEA) as it ac-
counts for random noise and allows for statistical 
hypothesis testing. Endogeneity within the stochas-
tic frontier model is  addressed using the approach 
of Karakaplan and Kutlu (2017a, 2017b, 2017c), ensur-
ing unbiased inefficiency estimates. A Cobb–Douglas 
(CD) production function is  selected over translog 
or quadratic specifications due to its robustness against 
multicollinearity and its stable estimation properties. 
To  compare efficiency between adopters and non-
adopters, a fractional response model (fracreg) is used, 
incorporating the Mundlak (1978) approach to reduce 
bias. While the selected methods effectively address 
both endogeneity and heterogeneity, the detailed ana-
lytical procedures and the rationale for choosing these 
methods are provided below.

The impact of  RFA adoption on  fertiliser use. 
The impact of RFA adoption on fertiliser use is mod-
elled as follows: 

1 20 RFAit it it i itY X v=β +β +β + + ε
	                             (1)

where: Yit – the total amount of  fertiliser (F) applied 
by farmer i at time t; RFAit – the farmers' adoption status 
of RFA; Xit – a vector of predictor variables; vi – the unob-
served, time-invariant household effects; β0 – the intercept 
term; β1 – the effect of RFA adoption; β2 – the influence 
of predictor variables; εit – the error term.

Utilising pooled ordinary least squares (OLS) to es-
timate Equation  (1) presumes there is  no  correlation 
between error terms and the regressors. However, this 
approach fails to account for the panel structure of the 
data, potentially leading to inefficiencies due to intra-
household error correlation (Tambo et al. 2020). A ran-
dom effect (RE) model can be used but it holds strong 
assumption that the regressors are uncorrelated with 
the error terms (Wooldridge 2010). If  farmers' deci-
sions to  adopt RFA are not random, this assumption 
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is violated, leading to  biased estimates (Tambo 
et al. 2020; Sunny et al. 2024). Although a fixed effects 
(FE) estimator could be applied, the model may encoun-
ter issues due to incidental parameters (Greene 2004; 
Wooldridge 2010; Tambo et  al.  2020). Besides, other 
approaches such as difference-in-differences (DID) and 
propensity score matching (PSM) could also be consid-
ered. However, DID relies on the assumption of parallel 
trends (Marcus and Sant'Anna 2021), which does not 
hold in this context, whereas PSM fails to account for 
unobserved heterogeneity (Nimmo et al. 2022). 

Given these limitations, the CRE model proposed 
by Mundlak (1978) is used. While CRE approach ef-
fectively addresses unobserved heterogeneity, it does 
not resolve endogeneity (Wooldridge 2010; Tambo 
et al. 2020). Therefore, a two-stage estimation proce-
dure combining the CRE model with the CF approach 
is  employed. This estimation procedure requires 
at least one instrumental variable (IV) that is strongly 
and partially correlated with RFAit but uncorrelated 
with the unobservables affecting the outcome vari-
ables (Smith and Blundell 1986; Wooldridge 2010; 
Tambo et al. 2020). The IV selected for this analysis 
is  'fertiliser information seeking state', based on  the 
premise that farmers typically seek advice on input us-
age from trusted individuals. This variable is expected 
to influence RFA adoption decision, while not directly 
affecting the outcome variables (Kassem et  al.  2021; 
Luo et al. 2022; Wu 2022; Sunny et al. 2024).

Consequently, the first stage equation, revised from 
Equation (1), can be expressed as:

1 2 3RFA  it it i i itX IV X v=β +β +β + + ε  	                 (2)

where: iX  – the time averages of the time-varying covar-
iates, with associated parameters β3; IV – the instrumen-
tal variable (fertiliser information-seeking state).

In the second stage, the generalised residual ( ˆ )itR  
obtained from the first-stage regression [Equation (2)], 
is incorporated into the outcome of Equation (3): 

0 1 2 3 4 RF ˆAit it it i it i itY X X R v=β +β +β +β +β + + ε      (3)

where: ˆ
itR – the generalized residual; β4 – captures the 

effect of ˆ
itR  after correcting for endogeneity by includ-

ing the generalized residual ˆ
itR in the model.

The significance of  ˆ
itR  would indicate that the RFA 

adoption variable is  endogenous (Wooldridge 2010; 
Tambo et al. 2020). 

To ensure robustness, we  employ the two-stage 
residual inclusion (2SRI) approach, a  method used 

to  address endogeneity. This approach has been ap-
plied in other empirical studies (Terza et al. 2008; Ma 
and Zhu 2020; Zhang et al. 2023), demonstrating its 
effectiveness in handling endogeneity concerns.

RFA adoption impact on  cost efficiency. To  un-
derstand how RFA adoption impacts efficiency levels, 
two commonly used methods are SFA and DEA. Coe-
lli (1995) compared these two methods and noted that 
the main strengths of SFA lie in  its ability to account 
for stochastic noise and its capacity to permit statistical 
testing of  hypotheses related to  production structure 
and the degree of inefficiency.

In contrast, DEA is a deterministic method that attrib-
utes all deviations from the production frontier to inef-
ficiencies. As a result, DEA estimates are more sensitive 
to  measurement errors or  other forms of  noise in  the 
data. Moreover, SFA is  particularly advantageous for 
evaluating efficiency in  agricultural production (Rein-
hard et al. 2000; Bai et al. 2019; 2020). 

Given these considerations, this study adopts the sto-
chastic frontier cost function model proposed by Karaka-
plan and Kutlu (2017a, 2017b, 2017c), which addresses 
the issue of endogeneity. A previous study by Islam and 
Fukui (2018) also applied this method to assess the ef-
ficiency of rice production systems in Bangladesh. Fol-
lowing their approach, we  employ the CD stochastic 
frontier cost function in this study.

The CD functional form is  chosen over translog 
or  quadratic alternatives because the latter are more 
susceptible to  multicollinearity when variables differ 
in  nature. Additionally, the CD function yields more 
stable estimates even when basic assumptions are vio-
lated and is suitable for use across a range of datasets 
(Azad and Rahman 2017; Tenaye 2020).

Drawing from Karakaplan and Kutlu (2017a, 2017b, 
2017c), our stochastic frontier model for panel data 
is expressed as follows: 

 it ait it itY x v su′= β + −  			    (4)
it it itx Q= δ + ε

 ( ) it uit u iu uxh ∗= ϕ
1s = −  for cost functions 

where: Yit – the logarithm of the cost of the ith produc-
tive unit at time t; aitx  – the vector of endogenous and 
exogenous variables; β – in equation 4 represents the 
vector of coefficients associated with the explanatory 
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variables; xit – a  1ρ×  vector of all endogenous varia-
bles (excluding Yit);  it itQ I Qρ ′= ⊗ ; itq  is a  1r ×  vector 
of  all exogenous variables; itv  and itε  – two-sided 
error terms; δ – the coefficient vector linking exogenous 
variables to the endogenous regressors; itε – the stand-
ardised first-stage residuals; Ω – the variance-covari-
ance matrix of  itε ; 2

vσ  – the variance of  itv ; ρ – the 
vector representing the correlation between itε  and itv ; 
Iρ – identity matrix used to build the instrument matrix; 

0itu ≥  – one-sided error term capturing the ineffi-
ciency; ( ) 0it uit uh xh= ϕ > ; uitx – a vector of exogenous 
and variables excluding the constant; iu

∗ – a producer-
specific component independent from itv , and itε ; φu 
– the vector of coefficients in the inefficiency equation.

Hence, itu  and itv  can be correlated with itx , yet 
itu  and itv  are conditionally independent given itx  

and itq . Similarly, itu  and itε  are conditionally inde-
pendent given itx  and .itq  

By applying a Cholesky decomposition to the vari-
ance-covariance matrix corresponding to ( )' , 'it itvε , 
the decomposition can be expressed as:

0
 

1
it it

it itv v

I
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		        ; wit – the component of vit that is inde-

pendent of itε , scaled by its standard deviation; σw the 
standard deviation of wit.

This setup is  important because ite  is  condition-
ally independent of the regressors given itx  and itq . 
In Equation (7), the term ( )'it itx Q− δ η  serves as a bias 
correction term (Karakaplan and Kutlu 2017a, 2017b, 
2017c). We assume that:

( )2 ~ ,i uu N +∗ µ σ  			                	                 (7)
( )2

it uit uh exp x= ϕ  				     
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where: Ф – the standard normal cumulative distribution 
function (Karakaplan and Kutlu 2017a, 2017b, 2017c). 

We predict the cost efficiency, ( )expit itEFF u= − , by:
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where: ϕ – the standard normal probability density 
function. 
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Moreover, the model facilitates the standard Durbin–
Wu–Hausman test for endogeneity, conducted by  as-
sessing the joint significance of the components of the η 
term. If η is  jointly significant, it  indicates the presence 
of endogeneity in the model. Conversely, if η is not jointly 
significant, the correction term is unnecessary, and effi-
ciency can be estimated using traditional frontier models 
(Karakaplan and Kutlu 2017a, 2017b). 

In a cost frontier model, the condition of linear ho-
mogeneity of  degree one must be  satisfied; that is, 

( 1) 1n
j j= β =∑ . This assumption is met by normalising 

the total cost and input prices by the price of one of the 
inputs (Jehle and Reny 2011; Islam and Fukui 2018). 
In this study, the seed price () is considered as the nu-
meraire, used to  normalise the total cost and prices 
of the other inputs. 

Based on above discussion, the CD stochastic fron-
tier cost function model, using the logarithmic form 
of all variables, is expressed as follows:
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The inefficiency model is expressed as follows: 
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(11) 

where: C  – total production cost; K, L, LB, S UF, TF, 
MPF, I, T, P and Q – the costs of other input variables, 
with S  used for the normalisation process; RFA, AG, 
AS, ED, FL, LS, LT, SFP, SWR, IMO, OE and CO – the 
inefficiency variables, a  full description of  all vari-
ables is provided in Table 1; β and σ – the parameters 
to be estimated; i  and t  – the ith farmer and the tth 
observation, respectively; itv  – the error term; itu  – 
the farmer-specific characteristics related to cost inef-
ficiency (Karakaplan and Kutlu 2017a, 2017b, 2017c), 
as  the focus of  this study is  to understand the impact 
of  RFA  adoption on  cost efficiency, the RFA  adop-
tion variable is  included in  the inefficiency term 
( itu ) model; itε  – the error term in inefficiency model.

The variables used in Equations (10 and 11) are trans-
formed using the natural logarithm to correct for skewed 
distributions and to mitigate the influence of large outli-
ers. Logarithmic transformation helps to normalise the 
distributions, making them more appropriate for regres-
sion analysis and reducing the distortion caused by ex-
treme values. Additionally, it enhances interpretability, 
as  coefficients in  log-linear models can be  expressed 
in  percentage terms – a  feature particularly valuable 
in economic and efficiency analysis.

However, categorical variables used in  the inef-
ficiency or  other models are not log-transformed, 
as they do not follow a continuous distribution where 
such a transformation would be meaningful. Likewise, 
efficiency scores – bounded between 0 and 1 – are re-
tained in their original scale, as the logarithm of zero 
is undefined.

To compare which cohort (adopters or  non-adop-
ters) demonstrated superior efficiency levels, we  em-
ployed a range of analytical approaches. Given that the 
efficiency variable is constrained within the interval (0, 
1), and considering the nature of the dependent vari-
able, we adopted a fractional response model (fracreg) 
incorporating the Mundlak device to mitigate potential 
bias (Papke and Wooldridge 2008). 

Alternative approaches – such as  Tobit regression, 
the two-part (hurdle) model, generalised linear models 
(GLM) with logit or probit links, and OLS with a  log-
odds transformation – have notable limitations. The To-
bit model assumes a normally distributed latent variable, 
which may not be appropriate for efficiency scores. OLS 
with a log-odds transformation risks generating predic-
tions outside the valid range and requires adjustment for 
values at 0 or 1, whereas the fractional response model 
naturally ensures valid predictions. Compared with 
GLMs using logit or probit links, the fractional response 
model imposes fewer distributional assumptions, offer-
ing greater flexibility when analysing real-world efficien-
cy data. The two-part (hurdle) model is also unsuitable 
in this context, as efficiency scores are continuously dis-
tributed and do not exhibit a spike at 0 or 1.

Moreover, the fractional response model provides 
more intuitive interpretation of coefficients than OLS, 
which expresses effects in log-odds rather than actual 
efficiency scores. Given its capacity to  handle frac-
tional data effectively while maintaining interpretabil-
ity and avoiding restrictive assumptions, the fractional 
response model is the most appropriate choice for this 
study. The model specification is presented as follows:

0 1 2 3 RFAit it it i i itY X X v=ϑ +ϑ +ϑ +ϑ + + ε                  (12)
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where: itY  – the cost efficiency score; itX  – other 
explanatory variables; iX  – the time averages of  the 
time-varying covariates with associated parameters 3ϑ ; 
iv  – the time-invariant unobserved household effects, 

assumed to be normally distributed with zero mean and 
constant variance; 0ϑ  – the intercept term; 1ϑ  – the 
effect of  adoption on  fertiliser use; 2ϑ  – the effects 
of other explanatory variables; itε  – the error term.

For robustness checks, beta regression is employed, 
as it effectively models dependent variables within the 
(0,1) range while accounting for varying dispersion 
(Pirani et al. 2018; Cribari-Neto 2023). This approach 

enhances the reliability of the results by ensuring con-
sistency across different modelling frameworks. Beta 
regression serves as a useful complement to the frac-
tional response model, preserving the fractional nature 
of efficiency scores while offering an alternative speci-
fication. The combined use of the fractional response 
model as the primary method and beta regression for 
robustness strengthens the comprehensiveness and 
credibility of the analysis.

Variables description. All  variables used in  this 
study are presented in Table 1 and are selected based 
on existing research and academic literature (Azad and 

Table 1. Variables used in different models

Variables Description
RFA (recommended fertiliser application) 1 = farmer has adopted RFA, 0 = otherwise
Production (C) production cost (USD/ha)
Capital (K) capital assets (i.e. machinery) cost after depreciation (USD)
Land (L) land rent (USD/ha)
Labour (LB) labour wage (USD/man-days)
Seed (S) seed price (USD/kg)
Urea (UF) urea fertiliser price (USD/kg)
TSP (TF) TSP fertiliser price (USD/kg)
MOP (MPF) MOP fertiliser price (USD/kg)
Tilling (T) mechanical ploughing price (USD/ha)
Pesticide (P) pesticide and insecticide price (USD/ha)
Irrigation (I) irrigation cost (USD/ha)
Rice Produce (Q) total rice production (kg/ha)
Fertiliser (F) total amount of fertiliser uses (kg/ha)
Age (AG) age of the respondents in years
Age square (AS) squared value of the respondents age
Education (ED) 1 = farmer is literate, 0 = otherwise
Household size (HS) 1 = more than 4 family members, 0 = otherwise
Family labour (FL) number of active labours in household
Land size (LS) land area (ha)
Land typology (LT) 1 = mid-highland, 0 = low or mid-low
Land ownership (LO) 1 = farmer owned, 0 = otherwise
Soil water retention (SWR) 1 = farmland can hold water long, 0 = otherwise
Soil fertility perception (SFP) 1 = farmer perceives their farmland as fertile, 0 = otherwise
Knowledge of RFA (KF) 1 = farmers know about recommendation doses, 0 = otherwise
Credit obtainability (CO) 1 = farmers obtain credit during cropping season, 0 = otherwise
Off-farm earning (OE) log value of secondary income (USD)
Irrigation machine ownership (IMO) 1 = farmers own irrigation machine, 0 = otherwise,
Instrumental variable (IV): fertiliser information
seeking state (FIS)

1 = farmers seek information of fertiliser doses from others,
0 = otherwise

MOP – muriate of potash; TSP – triple super phosphate; ha – hectare 

Source: Author's elaboration
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Rahman 2017; Islam and Fukui 2018; Tambo et al. 2020; 
Sunny et al. 2022a, 2022b, 2022c).

RESULTS AND DISCUSSION

Descriptive statistics. Table  2 compares adopters 
and non-adopters of  RFA across agronomic, demo-
graphic, and institutional characteristics. While sev-
eral indicators appear similar across groups, notable 
differences highlight distinct behavioural and re-
source patterns. Adopters exhibit slightly lower av-
erage production costs (458.49 vs 477.52) and nearly 
identical levels of capital and land use. Labour input, 

seed, pesticide, and tillage use are consistent across 
groups, while irrigation intensity is  notably higher 
among adopters (147.61 vs 134.13), reflecting more 
proactive water management. Fertiliser component us-
age remains unchanged; however, adopters apply less 
total fertiliser (437.85 vs 505.99) with lower variation, 
indicating more targeted application. Although non-
adopters report marginally higher yields (6  166.86 
vs 6 071.16), adopters show more stable output with 
a lower standard deviation.

Demographic characteristics differ modestly. Adop-
ters are marginally older (45.15 vs 43.21), with a higher 
age-squared value, suggesting greater farming experi-
ence. Education, household size, and reliance on family 
labour are broadly similar across groups.

Regarding resource endowments, adopters cultivate 
smaller plots (0.36 ha vs 0.44 ha) but enjoy higher land 
ownership rates (0.96 vs 0.90). Land typology values 
indicate that non-adopters face greater fragmentation 
(0.56 vs 0.10). Adopters also benefit from stronger soil 
water retention (0.80 vs 0.26) and slightly more favour-
able soil fertility perceptions (0.36 vs 0.30).

Institutionally, adopters demonstrate greater aware-
ness of  RFA (0.35 vs 0.30) but have less access 
to  credit (0.54 vs 0.69), suggesting that adoption 
is not credit-driven. Irrigation machinery ownership 
is more common among non-adopters (0.56 vs 0.43), 
reflecting different capital strategies. Finally, off-
farm income is nearly identical across groups (5.87 
vs 5.77), suggesting that reliance on non-agricultural 
earnings does not differ meaningfully between adop-
ters and non-adopters.

RFA adoption impact on  farmers' fertiliser use 
amount. Table  3 presents the results of  the main 
model – the CRE probit model with a CF approach –
alongside the robustness check using the 2SRI model. 
In the first stage of both models, the adoption of RFA 
is  significantly influenced by  several factors. Land 
typology shows a  negative effect (−0.073, P  <  0.10), 
indicating that certain land types are less conducive 
to RFA adoption. This may be attributed to variations 
in  soil characteristics or  environmental constraints 
in  these areas. This finding is  particularly relevant, 
as Boro rice farming requires flooded fields. Leakage 
issues on comparatively higher land impede the ability 
to retain ponded water, resulting in fertiliser wastage 
and increased fertiliser use (Pearson et al. 2018). Soil 
water retention demonstrates a  substantial positive 
effect (0.076, P < 0.05), suggesting that farmers with 
better water-retaining soils are more likely to  adopt 
RFA. Prior studies have shown that soil retaining 

Table 2. Descriptive statistics of variables

Variables Mean SD
Adopt Non-adopt Adopt Non-adopt

C 458.49 477.52 46.08 43.96
K 350.92 351.72 53.20 53.44
L 205.50 205.65 55.49 55.43
LB 3.00 3.00 0.51 0.50
S 0.40 0.39 0.10 0.10
UF 0.17 0.17 0.02 0.02
TF 0.21 0.21 0.02 0.02
MPF 0.31 0.31 0.06 0.06
T 42.26 42.00 13.36 13.10
P 42.12 42.23 13.39 13.27
I 147.61 134.13 40.63 25.89
Q 6 071.16 6 166.86 474.32 633.24
F 437.85 505.99 53.49 103.33
AG 45.15 43.21 9.44 10.37
AS 2 127.46 1 974.05 894.22 981.54
ED 0.86 0.87 0.35 0.34
HS 0.45 0.48 0.50 0.50
FL 1.15 1.15 0.50 0.42
LS 0.36 0.44 0.34 0.27
LT 0.10 0.56 0.30 0.50
LO 0.96 0.90 0.20 0.30
SWR 0.80 0.26 0.40 0.44
SFP 0.36 0.30 0.48 0.46
KF 0.35 0.30 0.48 0.46
CO 0.54 0.69 0.50 0.46
OE 5.87 5.77 0.43 0.43
IMO 0.43 0.56 0.49 0.50

Variables as explained in Table 1. 

Source: Author's elaboration
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Table 3. Impact of RFA adoption on fertiliser use amount in CRE-CF and 2SRI model

CRE with CF 2SRI
First stage Second stage First stage Second stage

Variables RFA adoption 
(0/1)

log fertiliser
quantity (kg/ha)

RFA adoption 
(0/1)

log fertiliser
quantity (kg/ha)

dy/dx (SE) dy/dx (SE) dy/dx (SE) dy/dx (SE)

RFA Adopt – –0.120***
(0.022) – –0.120***

(0.022)

Age (AG) 0.000
(0.002)

–0.002
(0.004)

0.000
(0.002)

–0.001
(0.004)

Age square (AS) 0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

Education (ED) –0.005
(0.010)

–0.020*
(0.012)

–0.005
(0.010)

–0.020*
(0.012)

Household size (HS) –0.003
(0.006)

0.005
(0.006)

–0.003
(0.006)

0.005
(0.006)

Family labour (FL) 0.012
(0.011)

0.013
(0.008)

0.012
(0.011)

0.013
(0.008)

Land size (LS) 0.001
(0.009)

0.054***
(0.015)

0.001
(0.009)

0.054***
(0.015)

Land ownership (LO) –0.003
(0.017)

–0.025
(0.018)

–0.003
(0.017)

–0.025
(0.018)

Land typology (LT) –0.073*
(0.038)

0.031
(0.020)

–0.073*
(0.038)

0.031
(0.020)

Soil fertility perception (SFP) –0.002
(0.005)

0.002
(0.006)

–0.002
(0.005)

0.002
(0.006)

Soil water retention (SWR) 0.076**
(0.038)

–0.155***
(0.013)

0.076**
(0.038)

–0.155***
(0.013)

Irrigation machine ownership (IMO) –0.006
(0.007)

–0.031***
(0.010)

–0.006
(0.007)

–0.031***
(0.010)

Knowledge of RFA (KF) 0.006
(0.008)

–0.012
(0.010)

0.006
(0.008)

–0.012
(0.010)

Off-farm earning (OE) 0.013
(0.010)

0.010*
(0.006)

0.013
(0.010)

0.010*
(0.006)

Credit obtainability (CO) –0.005
(0.006)

–0.003
(0.002)

–0.005
(0.006)

–0.003
(0.002)

Instrumental variable (IV):
fertiliser information seeking state (FIS)

0.066**
(0.031) – 0.066**

(0.031) –

Residual – 0.025***
(0.005) – 0.025***

(0.005)
Time dummy yes yes yes yes
Mean of time varying variables included yes yes no no
Observations 2 025 2 025 2 025 2 025

*, ** and ***significance at 0.1, 0.05 and 0.01 levels, respectively; values in parentheses are delta-method standard errors; 
the mean of time-varying variables was included in the model but not reported for brevity

2SRI – two-stage residual inclusion; CF – control function; CRE – correlated random effects; RFA – recommended 
fertiliser application

Source: Author's elaboration 
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a balanced amount of water supports crop growth and 
maintains soil organic matter. In contrast, soils with 
low water-holding capacity require greater inputs 
of organic and chemical fertilisers (Dong et al. 2012). 
The instrumental variable, farmers' fertiliser informa-
tion-seeking behaviour, displays a  positive relation-
ship with RFA adoption.

The second-stage results from both the CRE-CF and 
2SRI models are highly consistent. Most notably, RFA 
adoption exhibits a  significant negative effect on  fer-
tiliser use, reducing it  by  12% (coefficient: −0.120, 
P < 0.01) in both models.

Several control variables also display significant ef-
fects on  fertiliser use. For  instance, education level 
shows a marginally significant negative effect (−0.020, 
P < 0.10), suggesting that more educated farmers tend 
to  use less fertiliser. Previous studies have indicated 
that education enhances farmers' allocative efficiency 
by enabling them to think critically and utilise informa-
tion sources effectively, thereby restricting the quantity 
of  fertiliser applied to  some extent (Tan et  al.  2022). 
Land size shows a  strong positive association (0.054, 
P < 0.01), implying that larger farms tend to use more 
fertiliser per hectare. In contrast, soil water retention 
shows a substantial negative effect (−0.155, P < 0.01), 
consistent with the idea that soils with better moisture 
capacity make more efficient use of  nutrient (Sunny 
et  al.  2022c). Similarly, ownership of  irrigation ma-
chinery is associated with lower fertiliser use (−0.031, 
P < 0.01). This finding aligns with earlier studies, which 
argue that the high fixed costs associated with machin-
ery ownership can constrain the availability of  work-
ing capital for other inputs (Schimmelpfennig 2016). 
Besides, off-farm earnings (0.010, P < 0.10) positively 
influence adoption, indicating that households with 
off-farm income sources are more likely to  adopt 
RFA, possibly due to greater financial capacity or  re-
duced risk aversion. This aligns with previous find-
ings suggesting that adopting new technologies often 
incurs additional costs (Rahman et  al.  2021). Finally, 
the significance of  the residual term (0.025, P < 0.01) 
in both models confirms the presence of endogeneity, 
thereby validating the instrumental variable approach. 
The consistency of results across both models – despite 
differences in  specification – strengthens the robust-
ness and credibility of the findings.

Estimation of overall cost efficiency. Table 4 pre-
sents the estimation results of  both the endogenous 
and exogenous cost stochastic frontier production 
functions using the Cobb–Douglas specification. 
The  model statistics for the endogeneity test of  RFA 

adoption are significant (χ² = 4.33, P < 0.05), indicat-
ing that the endogenous model provides more appro-
priate estimates for inference, particularly regarding 
the impact of  RFA adoption on  efficiency. In  validat-
ing the IV, we  found it  statistically significant at  the 
1% level, with a  z-value of  11.51 (Supplementary  Ta-
ble  S1), thereby justifying the use of  an  endogeneity 
correction model. Previous studies have noted that 
for a  single endogenous variable, a  commonly used 
rule of thumb for IV validation is a z-value exceeding 
√10 ≅ 3.16 (or F-value > 10). Therefore, our instrument 
satisfies this criterion and qualifies as a strong instru-
ment (Karakaplan and Kutlu 2017a; Islam and Fukui 
2018). We also confirmed instrument validity through 
the 2SLS results presented in Supplementary Table S2. 
Both the endogeneity tests (Durbin and Wu-Hausman) 
and the instrument strength (F-statistics) indicate that 
our instrument meets the conventional thresholds, 
qualifying it as a strong instrument. Furthermore, the 
efficiency score indicates that, after accounting for en-
dogeneity, the mean cost efficiency slightly decreased 
from 0.845 7 to 0.842 8.

The estimation results from both the exogenous and 
endogenous stochastic frontier models yield several 
important insights into agricultural production effi-
ciency. All  input variables are statistically significant, 
though their magnitudes vary. Capital demonstrates 
the strongest influence, with an  elasticity of  0.286 
and 0.287 in  the exogenous and endogenous models, 
respectively (P < 0.001). Irrigation and tilling emerge 
as  the next most influential inputs, with coefficients 
ranging from 0.145 to 0.160 and 0.147 to 0.149, respec-
tively (P < 0.001). TSP fertiliser also exerts a substantial 
effect (0.127–0.139, P < 0.001), while other fertilisers 
(MOP and urea) show more moderate influences. No-
tably, pesticide use demonstrates the smallest elasticity 
among all inputs (0.012), suggesting a relatively minor 
contribution to  production outcomes. This finding 
holds important implications for input optimisation 
and cost management strategies.

The inefficiency effects model reveals several signifi-
cant determinants of  cost inefficiency. RFA adoption 
demonstrates a strong negative association with inef-
ficiency (ranging from –0.257 to –0.649, P < 0.001), in-
dicating that adopters tend to operate more efficiently. 
Household size shows a consistent positive relationship 
with inefficiency (0.212–0.239, P  <  0.005), suggest-
ing that larger households may encounter difficulties 
in optimal resource allocation.

Moreover, soil water retention in the exogenous mod-
el exhibits a significant negative effect (–0.400, P < 0.05), 

https://agricecon.agriculturejournals.cz/esm/473/2024-AGRICECON/1.pdf
https://agricecon.agriculturejournals.cz/esm/473/2024-AGRICECON/1.pdf
https://agricecon.agriculturejournals.cz/esm/473/2024-AGRICECON/1.pdf
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Table 4. Estimated results of the stochastic cost frontiers with inefficiency effects model

Variables
Exogenous model Endogenous model

    estimate SE      estimate  SE
Capital (K) 0.286*** 0.012 0.287*** 0.014
Land (L) 0.032*** 0.006 0.033*** 0.007
Labour (LB) 0.039*** 0.010 0.040*** 0.011
Urea (UF) 0.042*** 0.009 0.050*** 0.011
TSP (TF) 0.139*** 0.012 0.127*** 0.015
MOP (MPF) 0.062*** 0.011 0.067*** 0.013
Pesticide (P) 0.012** 0.004 0.012* 0.005
Irrigation (I) 0.145*** 0.014 0.160*** 0.015
Tilling (T) 0.149*** 0.008 0.147*** 0.009
Rice produce (Q) 0.079*** 0.018 0.061** 0.019
Year dummy –0.038*** 0.002 –0.040** 0.002
Constant 2.915*** 0.088 2.919*** 0.098

Inefficiency variables:
Constant –4.549*** 0.547 –4.776*** 0.540
RFA adoption –0.256*** 0.068 –0.649*** 0.185
Age (AG) 0.023 0.018 0.030† 0.017
Age squared (AS) 0.000 0.000 –0.000 0.000
Education (ED) 0.218 0.205 0.216 0.205
Household size (HS) 0.239*** 0.070 0.212** 0.068
Soil water retention (SWR) –0.400* 0.157 –0.228 0.176
Soil fertility perception (SFP) –0.014 0.018 –0.042† 0.023
Irrigation machine ownership (IMO) 0.531*** 0.149 0.465** 0.152
Off-farm earning (OE) 0.013 0.050 0.049 0.051
Knowledge of RFA (KF) 0.065 0.150 0.068 0.150

Dependent variable: ln (σ²_v)
Constant –7.633*** 0.037 – –
Dependent variable: ln (σ²_w)
Constant – – –7.646*** 0.037
Endogeneity test:
η RFA adoption – – 0.043* 0.021
η endogeneity test – – χ2 = 4.33 P = 0.037
Log likelihood 3 947.41 3 225.08
Mean efficiency 0.845 7 0.842 8
Median efficiency 0.8443 0.841 7
Number of observations 2 025 2 025

***, **, * and †significance at 0.1%, 1%, 5% and 10% levels, respectively

MOP – muriate of potash; RFA – recommended fertiliser application; TSP – triple super phosphate

Source: Author's elaboration
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indicating that rice cultivation on high water-retaining 
land reduces inefficiency. This finding underscores the 
link between water-holding capacity and soil health. 
Previous studies have indicated that soils with adequate 
water retention support crop growth and preserve soil 
organic matter (Dong et al. 2012). In addition, owner-
ship of irrigation machinery is positively and significant-
ly associated with inefficiency (0.465–0.531, P < 0.05). 
This aligns with earlier studies that highlight the sub-
stantial fixed costs of machinery ownership, which may 
constrain capital availability for other essential inputs 
in  the production process (Schimmelpfennig 2016). 
Besides, farmers age is positively associated with inef-
ficiency (0.030, P < 0.10). Finally, the soil fertility variable 
is negatively and significantly associated with inefficien-
cy (–0.037, P < 0.10). This result is consistent with the 
findings of Salam et al. (2021), which indicate that rice 
productivity depends on improved soil fertility.

Impact of  RFA adoption on  cost efficiency. Ta-
ble 5 presents the estimated impact of RFA adoption 
on efficiency using two distinct estimation approaches. 
The  primary model employs the fractional response 
model, while the robustness check utilises the beta re-
gression model. Both methodologies incorporate CRE 
probit framework with a CF, thereby enhancing the ro-
bustness and reliability of the analysis. The results dem-
onstrate consistent findings across the two estimation 
methods, reinforcing the validity of  the conclusions. 
RFA adoption exhibits a  positive and highly signifi-
cant effect on  efficiency in  both models. The  magni-
tude of  this effect ranges from 0.049 in the fractional 
response model to 0.051 in the beta regression model. 
This consistency suggests that RFA adoption improves 
efficiency by  approximately 4.9% to  5.1%, reflecting 
a  meaningful enhancement in  farming productivity. 
These results are in  line with earlier research, which 
indicated that balanced nutrient management con-
stitutes a  cost-effective and environmentally friendly 
strategy for achieving sustainable intensive rice crop-
ping systems (Shankar et al. 2021).

Among the control variables, the inverse relation-
ship between education and efficiency in the beta re-
gression model aligns with recent research findings 
(Seok et al. 2018; Sunny et al. 2022a). While this out-
come may appear to contradict human capital theory, 
it highlights the phenomenon of education-driven oc-
cupational shifts from agricultural to non-agricultural 
sectors. In Bangladesh, rural youth increasingly pursue 
public or private sector employment, largely due to the 
perceived social prestige associated with these careers 
(Sunny et  al.  2022a). As  a  result, their engagement 

Table 5. Adoption impact of RFA on cost efficiency

Variables
Fractional regression Beta regression

dy/dx SE dy/dx SE
RFA Adopt 0.049*** 0.006 0.051*** 0.006
Age (AG) 0.001 0.002 0.001 0.002
Age Square 
(AS) –0.000 0.000 –0.000 0.000

Education 
(ED) –0.013 0.009 –0.022* 0.011

Household 
size (HS) –0.013** 0.005 –0.016** 0.007

Family 
labour (FL) 0.027*** 0.007 0.035*** 0.009

Land size 
(LS) –0.007 0.007 –0.013 0.010

Land 
ownership 
(LO)

0.001 0.008 0.003 0.009

Land typol-
ogy (LT) –0.016** 0.007 –0.015** 0.008

Soil fertility 
perception 
(SFP)

0.013*** 0.005 0.014** 0.006

Soil water 
retention 
(SWR)

0.005 0.007 0.008 0.008

Irrigation 
machine 
ownership 
(IMO)

–0.030*** 0.006 –0.030*** 0.007

Knowledge 
of RFA 
(KF)

–0.006 0.005 –0.010 0.006

Off-farm 
earning 
(OE)

–0.015** 0.006 –0.016** 0.007

Credit 
obtainabil-
ity (CO)

–0.011** 0.005 –0.013* 0.007

Time 
dummy yes yes

Mean 
of time 
varying 
variables

yes yes

Observa-
tions 2 025 2 025

*, ** and ***significance at 0.1, 0.05 and 0.01 levels, respec-
tively; the mean of time-varying variables was included 
in the model but not reported for brevity

RFA – recommended fertiliser application

Source: Author's elaboration

in agriculture is often part-time, necessitating reliance 
on  hired labour. Goodwin and Mishra (2004) argue 
that improved educational attainment facilitates occu-
pational mobility away from agriculture. 
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The negative marginal effect coefficients in  both 
models indicate a decline in efficiency when household 
size exceeds four members. Supporting research sug-
gests that larger household consumption needs often 
compete with the optimal allocation of  farm inputs 
(Sunny et  al.  2022a). In  contrast, family labour has 
a  significant positive effect in  both models, implying 
that households with higher levels of  family labour 
participation exhibit lower inefficiency. Prior research 
has shown that family labour availability eases capital 
constraints and provides vital support during peak ag-
ricultural periods (Gebeyehu 2016). 

Soil fertility shows a  positive and significant rela-
tionship with efficiency, reinforcing earlier findings 
that link improved soil fertility with enhanced pro-
ductive performance (Fan et  al.  2005). Conversely, 
both off-farm income and access to credit during culti-
vation periods are negatively associated with efficiency. 
This finding is  noteworthy, as  credit availability does 
not always lead to optimal input use (Rizwan et al. 2019; 
Ouattara et al. 2020; Sunny et al. 2023). 

Similarly, ownership of irrigation machinery is associ-
ated with lower cost efficiency (–0.030, P < 0.01). This 
finding is consistent with earlier studies, which highlight 
that diesel-based irrigation systems are more expensive 
and therefore constrain the availability of  capital for 
other essential inputs in the production process (Sunny 
et  al.  2024). Finally, farmers cultivating highland areas 
exhibit lower efficiency levels, a result that accords with 
previous research suggesting that highland cultivation 
leads to greater input wastage (Sunny et al. 2022b).

The results of  this study demonstrate that the adop-
tion of  the recommended fertiliser application dosage 
(RFA) significantly reduces fertiliser use and improves 
cost efficiency in  rice cultivation, particularly among 
farmers growing the BRRI dhan29 variety in the Dina-
jpur region of Bangladesh. Adoption of RFA led to a 12% 
reduction in  fertiliser use among adopters compared 
to  non-adopters. This decline in  usage mitigates the 
risk of  environmental contamination through nutri-
ent runoff – especially relevant in  Bangladesh's acidic 
soil regions, where fertiliser over-application has been 
a common practice. By reducing the amount of fertiliser 
applied, RFA helps to lower nutrient loads entering wa-
ter bodies, thereby decreasing eutrophication, and pro-
tecting aquatic ecosystems. Furthermore, the improved 
soil management practices associated with RFA help 
prevent soil degradation and support soil health, foster-
ing a more sustainable agricultural environment.

Economically, RFA adoption has been shown to en-
hance cost efficiency. Empirical findings from both 

fractional and beta regression models indicate that 
adopters attain greater cost efficiency than non-adop-
ters, with efficiency gains ranging from 4.9% to 5.1%. 
This economic benefit translates into reduced in-
put costs, thereby increasing the profitability of  rice 
farming. Moreover, cost savings associated with RFA 
adoption strengthen farmers' resilience to fluctuations 
in  fertiliser prices – an  especially valuable outcome 
in a developing country such as Bangladesh. Notably, 
only 8.7% of small and marginal farmers in the coun-
try have access to finance from the state-owned Bang-
ladesh Krishi Bank, whose lending policies are often 
misrepresented by commercial banks or poorly under-
stood by farmers (FAO 2023).

These results support the alternative hypothesis 
that farmers adopting the BRRI-recommended RFA 
can reduce fertiliser usage and achieve greater ef-
ficiency compared to  non-adopters. This finding 
is  consistent with earlier research highlighting the 
dual benefits of  RFA: reducing environmental harm 
while improving economic outcomes. For  example, 
Jate (2010) found that balanced mineral fertiliser 
adoption yielded the highest nutrient use efficiency 
in  Germany. Similarly, Afrad et  al.  (2018) observed 
that the use of fertilisers recommended by the Bang-
ladesh Agricultural Research Council (BARC) pro-
duced the highest benefit-cost ratio (BCR) for rice 
farmers in  Bangladesh's Haor region. In  addition, 
Chen et al.  (2021) revealed that the adoption of bal-
anced fertilisation practices reduced excessive ferti-
liser use by between 35% and 93% in China.

The new evidence presented in  this study provides 
a strong rationale for promoting RFA as a sustainable 
agricultural practice. It  supports both national and 
international sustainability goals, and the robustness 
of  the findings – evident in  their consistency across 
multiple estimation methods – reinforces the reliabil-
ity of these conclusions.

CONCLUSION

This study, based on survey data from 2 025 house-
holds collected between 2017 and 2021, investigates the 
factors influencing the adoption of BRRI-recommended 
fertiliser dosages. It  also evaluates the impact of  RFA 
adoption on fertiliser consumption and cost efficiency, 
with a particular focus on economic sustainability.

The findings indicate that RFA adoption is influenced 
by  several factors, including the availability of  family 
labour, soils with good water retention, and off-farm 
income. However, farmers cultivating rice in highland 
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areas are less inclined to  adopt RFA. To  address this 
challenge, further research is needed to refine fertiliser 
application guidelines tailored to highland soil condi-
tions. In  addition, the development and promotion 
of  location-specific fertiliser management techniques 
could enhance nutrient uptake efficiency and encour-
age broader adoption among farmers.

Impact analysis confirms that RFA adoption results 
in a 12% reduction in fertiliser use and a 4.9% to 5.1% 
improvement in  cost efficiency compared to  non-
adopters. These findings highlight both the environ-
mental and economic advantages of  RFA adoption, 
demonstrating its potential to  promote sustainable 
agricultural practices while advancing several SDGs. 
Specifically, the reduction in  fertiliser use supports 
SDG  12 (responsible consumption and production) 
by  promoting efficient resource use and minimising 
environmental harm. It  also contributes to  SDG  13 
(climate action) by  reducing greenhouse gas emis-
sions associated with excessive fertiliser application, 
and supports SDG 2 (zero hunger) by preserving soil 
health and ensuring sustainable food production. Fur-
thermore, the cost efficiency gains align with SDG  8 
(decent work and economic growth) by strengthening 
farmers' financial resilience and enhancing livelihoods, 
while also supporting SDG 9 (industry, innovation and 
infrastructure) by encouraging advancements in agri-
cultural productivity and resource management.

This study represents the first longitudinal investiga-
tion into the impact of RFA adoption on fertiliser use 
and cost efficiency, offering novel insights that extend 
current knowledge. The  findings present compelling 
evidence in favour of RFA as a viable practice for sus-
tainable rice cultivation. However, transitioning from 
traditional fertiliser application methods to more sus-
tainable practices may be slow unless farmers perceive 
clear and long-term benefits. Therefore, beyond target-
ed initiatives such as field demonstration programmes, 
efforts must also focus on addressing farmers limited 
scientific knowledge. Notably, nearly 13% of  farm-
ers in  the sample are illiterate, which poses a  barrier 
to  understanding and adopting improved fertiliser 
techniques. Moreover, as observed during the survey, 
farmers tend to  seek information from non-experts 
such as  fertiliser sellers rather than trained extension 
personnel. These non-expert sources may lack techni-
cal knowledge or may have commercial incentives that 
discourage optimal application, potentially hinder-
ing widespread RFA adoption. Addressing this issue 
requires strengthening extension services, improving 
training programmes for both farmers and fertiliser 

vendors, and leveraging peer influence by encouraging 
early adopters to serve as role models.

While this study makes a  significant contribu-
tion to  understanding the impact of  RFA adoption 
on fertiliser use and cost efficiency, these findings are 
somewhat limited due to  their site-specific nature. 
To  improve the generalisability of  results, future re-
search should encompass a  broader range of  agricul-
tural zones, crop varieties, and soil types. Additionally, 
tackling socio-economic barriers, evaluating the long-
term effects of  RFA on  soil health, and assessing the 
effectiveness of  district-level initiatives through ad-
vanced modelling and robust monitoring frameworks 
will be  essential to  developing comprehensive strate-
gies for sustainable agriculture in Bangladesh. Future 
studies should also consider employing methodologies 
such as randomised control trials or DID approaches 
to  measure outcomes before and after intervention, 
providing a  more rigorous assessment of  the impact 
of  RFA adoption. Ultimately, fostering collaboration 
among researchers, policymakers and farmers is vital 
to ensuring that RFA adoption leads to long-term sus-
tainability and resilience in agriculture. By integrating 
scientific advancements with practical knowledge and 
targeted policy support, the agricultural sector can 
move towards a  more efficient, climate-resilient and 
economically viable future.
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