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Abstract: Sustainable intensification (SI) is a widely discussed concept that aims to increase agricultural production 
without harming the environment. This study assessed the process of SI that took place in the EU regions from 2004 
to 2018 and the impact of structural and weather-related factors. In doing so, a single index based on DEA environmen-
tally adjusted efficiency and kernel regression were applied to data from the Farm Accountancy Data Network (FADN) 
Public Database and the Agri4Cast resource portal. The study found an overall positive trend of SI in the EU regions 
in which land and animal concentration had a significant impact on this process. Sun radiation, as the only significant 
weather variable, had a decreasing impact on efficiency due to potential droughts. The findings emphasise the need for 
political support for regions with a low degree of SI and for those particularly affected by climate change.
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The United Nations predict that by 2050, the glob-
al population will exceed 9.7 billion (United Nations 
2022), resulting in a  significant increase in  food de-
mand (FAO et al. 2018). Climate change, including ex-
treme weather conditions, rapid urbanisation, leading 
to  the loss of  agricultural land and biodiversity, and 
changing consumption patterns to  resource-intensive 
diets pose additional challenges.

To tackle these challenges, it  is crucial to prioritise 
more efficient and sustainable approaches to meeting 
future food demand (Rockström et al. 2017). Sustain-
able intensification (SI) is a widely discussed concept 
in this context since it combines the issues of improv-

ing global food production and ecological sustain-
ability (Weltin et al. 2018). The aim of SI is to improve 
resource productivity without causing significant dam-
age to  the environment (Buckwell et  al. 2014). How-
ever, no uniform definition of this approach exists (Lyu 
et  al. 2021). Originally, SI was introduced by  Pretty 
(1997) in  the context of  agriculture to  improve the 
livelihoods of smallholders in  the Global South while 
fostering ecological gains. Later on, the concept has 
also been adjusted to the European context but there 
has  been an  ongoing discussion on  how to  define 
it  (Weltin et  al. 2018). In  this paper, we  consider SI 
with a holistic view, taking into account the social, en-
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vironmental and economic dimensions (Godfray and 
Garnett 2014). We will base the definition on the one 
by  Lampkin et  al. (2017), which states that SI means 
to  ‘improve overall agricultural productivity by  in-
creasing resource efficiency and reducing the environ-
mental impact per unit of production‘ .

Since the late 1990s, SI has been addressed by a num-
ber of  scholars, and particularly in  the last ten years, 
the topic has been gaining increasing attention, with 
an  annual literature growth rate of  35% (Lyu et  al. 
2021). As SI cannot be measured directly, proxies are 
necessary, and the choice of indicators should be made 
carefully (Barnes and Thomson 2014). However, there 
is no uniform way to do so, and research that assesses 
SI is still scarce.

Most existing studies applied an  aggregated index 
of eco-efficiency to assess SI (e.g. Gadanakis et al. 2015; 
Weltin and Hüttel 2022). While many of  these stud-
ies have a rather static view (e.g. Barnes and Thomson 
2014), Staniszewski et  al. (2023) focus on  the assess-
ment of  which progress of  SI has been made so  far. 
However, there is  still a  research gap in  controlling 
for the impact of  weather (Staniszewski et  al. 2023). 
So far, only a few studies have included weather vari-
ables in  environmentally adjusted efficiency models. 
They found a  significant negative impact of  higher 
temperatures on efficiency (Skevas and Lansink 2013; 
Skevas and Serra 2016; Soliman and Djanibekov 2020). 
The findings regarding rainfall were ambiguous across 
studies. They found either that higher precipitation 
increases efficiency as rainfall has a beneficial impact 
on the growth of the plants (Skevas and Lansink 2013; 
Skevas and Serra 2016), or has no impact at all (Soli-
man and Djanibekov 2020).

The method and procedures used for our analysis 
were built on the presented research and aimed to con-
tribute further to  the field. In  particular, we  propose 
a  new SI index combining socio-economic and eco-
efficiency components and use kernel regression to ex-
plore the relation between the sustainable intensifica-
tion process and structural and climate features of EU 
Farm Accountancy Data Network (FADN) regions.

In doing so, the following three main research ques-
tions will be addressed:

(i) How has the process of SI progressed in the EU 
regions from 2004 to 2018?

(ii) Which structural variables explain the process of SI?
(iii) How does the weather affect SI?
According to  the earlier studies, we  can formulate 

the following hypotheses as  answers to  the stated 
questions.

H1: In  the years 2004–2018 we  could observe a  pro-
gress in  sustainable intensification among EU re-
gions (Staniszewski 2018; Expósito and Velasco 
2020; Baležentis et al. 2021).

H2: The most important structural feature for the SI 
process is  land concentration (Skevas and Serra 
2016; Žáková Kroupová et al. 2018).

H3: High radiation negatively affects the SI process 
(Skevas and Lansink 2013; Skevas and Serra 2016; 
Soliman and Djanibekov 2020).

MATERIAL AND METHODS

The first challenge of this study was to measure the 
sustainable intensification (SI) process in  the form 
of  a  single index. To  best capture the environmental 
component, crucial for the concept of SI, we employed 
an  approach based on  environmentally adjusted ef-
ficiency. An  explanatory variable for the model was 
an SI index constructed according to the modified for-
mula proposed by Czyżewski and Staniszewski (2018), 
which is based on data envelopment analysis (DEA) re-
sults, a productivity index, and angular and Euclidean 
distance measures. The SI index consists of two com-
ponents – environmental and socio-economic perfor-
mance, which are calculated as TFP (total factor pro-
ductivity) indices. Further, two values are aggregated, 
based on the baseline level of socio-economic efficiency 
and the desired direction of change in these areas. This 
direction was set in  accordance with the assumption 
that more improvement should be sought in the area 
of greater inefficiency. The SI indicator takes on posi-
tive values when there has been sustainable intensifica-
tion on a farm in a given year, meaning that there has 
been improvement in at least one dimension without 
worsening in another. The method is described in de-
tail in the Electronic Supplementary Material (ESM).

The kernel regression was chosen as the best-suited 
technique to check for the impact of structural, weath-
er and other features of farming in EU FADN regions 
on the sustainable intensification process. The choice 
was driven by  the fact that the distribution of  the SI 
measure is  bimodal (Figure  S3 in  the ESM) and that 
many structural variables are expressed as proportion 
data, which is by nature bounded by 0 and 1 (Table S1 
in the ESM). Under such conditions, standard econo-
metric approaches such as ordinary least square (OLS) 
regression are not suitable due to  the lack of  normal 
distribution in  the data. In  this paper, we  follow the 
approach proposed by Czekaj and Henningsen (2013), 
who proved the usefulness of  kernel regression for 
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panel data. This approach makes it possible to estimate 
a conditional mean of SI indicators, controlling for the 
impact of structural, weather and other features. Ker-
nel regression is described in detail in  the Electronic 
Supplementary Material (ESM). This method was also 
successfully applied in the studies of agricultural per-
formance factors conducted by Baležentis et al. (2014), 
Ferreira and Almeida (2021) and Song et al. (2022).

The goal of the research was to verify the hypothesis 
that structural features remain significant predictors 
of  SI process after controlling for the impact of  other 
features and the impact of weather conditions. To verify 
this hypothesis, a  stepwise, backward regression was 
conducted. Predictors were excluded from the model 

based on their P-values until all the variables in the mod-
el were significant at a 0.01 level. A basic set of structural 
variables, described in detail in Table S1 in the ESM, was 
reduced using cluster analysis (for details see the ESM). 
Similar clustering was conducted for weather and con-
trol variables. Descriptive statistics of  variables taken 
into account in modelling are presented in Table 1.

Data for the study was acquired from two sources 
on  September 26, 2020. The first one was the Farm 
Accountancy Data Network (FADN) Public Database. 
We can obtain from it standardised economic results 
for different types of  farms in  all EU member states. 
The annual sample currently covers approximately 
80 000 holdings. They represent a population of about 

Table 1. Descriptive statistics of variables used in modelling, N = 1 554

Variable Mean Median SD Min. Max.
SI 1.39 1.20 1.43 –1.32 7.49
Concentration
LSU_S 0.74 0.75 0.16 –0.17 1.01
LAB_S 0.62 0.61 0.07 0.36 0.89
UAA_S 0.65 0.64 0.09 0.41 0.89
O_S 0.73 0.72 0.70 0.23 0.94
Specialisation
ABS_SPEC 0.33 0.30 0.17 0.07 1.00
REL_SPEC 0.51 0.51 0.08 0.28 0.72
MIXED 0.14 0.12 0.11 0.00 0.58
Direction
ANIMAL 0.41 0.40 0.20 0.03 0.96
Weather
PREC 414.75 415.13 134.36 38.50 857.84
RADIATION 16 416.85 15 967.00 3 046.253 6 068.49 23 777.10
Control variables
CAP_UAA 1 914.95 1 552.97 1 585.267 217.75 13 980.8
SUBSIDIES 0.2 0.18 0.12 0.01 0.94
RENTED_LAND 0.56 0.57 0.23 0.04 0.97
HIRED_LAB 0.28 0.22 0.20 0.01 0.94

SI – sustainable intensification index; ANIMAL – share of livestock output in total output; ABS_SPEC – distribution 
of total output among farms of different production type measured with Hirschman-Herfindahl Index (HHI); REL_SPEC – 
distribution of total output among farms of different production type measured in relation to average value with Krugman 
Index; LSU_S – distribution of livestock among farms of different economic size measured with standard concentration 
index (C); LAB_S – distribution of labour among farms of different economic size measured with C; UAA_S – distribution 
of land among farms of different economic size measured with C; O_S – distribution of livestock among farms of dif-
ferent economic size measured with C; MIXED – share of output generated by non-specialised farms in total output; 
PREC – sum of precipitation (in mm) in the growing season (from March 1 to October 31); RADIATION – average daily 
radiation (KJ·m–2) in the growing season; CAP_UAA – capital/land ratio; SUBSIDIES – ratio of total subsidies (excluding 
on investments) to total output; RENTED_LAND – share of rented utilised agricultural area; HIRED_LAB – share of paid 
labour input; for detailed description see supplementary materials
Source: Authors‘ own study
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5 000 000 farms in the EU, which covers approximately 
90% of  the total utilised agricultural area (UAA) and 
accounts for about 90% of  the total agricultural pro-
duction. The sample can be  divided into different 
types of  farming and economic size classes accord-
ing to standard output (SO) expressed in EUR, which 
is the average monetary value of the agricultural out-
put at the farm-gate price of each agricultural product 
(crop or livestock) in a given region. The SO is calcu-
lated by member states per ha or per head of livestock, 
by using basic data for a reference period of 5 succes-
sive years (European Commission 2020).

Data in  this work is  aggregated at  FADN regional 
level, which has some similarities with a standard No-
menclature of  Territorial Units for Statistics (NUTS) 
and can be  situated between NUTS-1 and NUTS-2 
delimitation level. This aggregation is  justified by  the 
willingness to evaluate structural features, such as con-
centration, specialisation and orientation, which can-
not be obtained at a farm level. In this study, we ana-
lysed representative farms in 111 FADN regions in the 
15-year period 2004–2018. The number of FADN re-
gions included in  the study was reduced from the 
overall number due to  several reasons. First, to  keep 
the panel balanced, we  excluded regions from Bul-
garia, Romania and Croatia, which joined the EU after 
2004. Second, non-European regions such as Canarias, 
Açores e Madeira, La Réunion, Guadeloupe and Mar-
tinique were not taken into account due to  the com-
pletely different specificity of agricultural production. 
Third, regions Sterea Ellas-Nissi Egaeou-Kriti, Castil-
la-La Mancha and Saarland were excluded as outliers. 
The final sample size includes 1 554 observations. All 
the values expressed in  EUR have been cleared from 
the impact of price and exchange rate changes and are 
expressed in constant 2010 prices.

The second source of  the data is Agri4Cast resource 
portal, which provided the data from JRC MARS Me-
teorological Database. Observations are available from 
weather stations interpolated on a 25 km × 25 km grid on 
a daily basis. Regional value is an average for all the grids 
in the region, weighted by the share of a given grid cell 
crop area in the total crop area in the given region in the 
given year. Only records for the growing season (March 1 
to October 31) were used to calculate the average.

RESULTS AND DISCUSSION

SI Index change. The first question to be answered 
in  this work is  how the process of  SI has progressed 
in  the EU regions. The changes from the 2004–2018 

period are presented in  Figure 1. Importantly, even 
though the SI index represents a  bimodal distribu-
tion in the overall sample, its distribution within each 
region over the years was normal in 106 of 111 cases 
(basing on Shapiro-Wilk test, P > 0.01), which is why 
we used average values in the map.

The fastest progress toward SI was achieved in  the 
Baltic countries (Lithuania, Latvia, Estonia), as  well 
as  in the regions of  England (North, East, West) and 
Northern Ireland. Positive examples from Southern 
Europe include the Hungarian region Alfold and Greek 
Makedonia-Thraki. However, the sources of  good re-
sults are different for the regions. For example, Lithu-
ania, a region with the highest average score 4.66, was 
characterised in  the whole period by  low average ef-
ficiency scores: 17.5% for socio-economic and 4.35% 
for environmental efficiency. Notably, those scores 
improved from 7.79 to 20.75% and from 2.28 to 5.16%, 
respectively, throughout the studied period. The di-
rection of  improvement was also adequate because 
farms in  the region improved relatively more in  the 
environmental scope, where more inefficiency exist-
ed in  the beginning. Therefore, a  base effect worked 
here. The  situation was similar in  the case of  Make-
donia-Thraki and Alfold, where although environ-
mental efficiency was particularly low for the whole 
period, it improved from ‘very low‘ to just ‘low‘ level. 
On the other hand, Latvia and Estonia improved more 
in  socio-economic aspects. The British regions were 
slightly different case where the starting level of effi-
ciency was higher; however, this did not prevent these 
regions from achieving a  significant improvement 
in performance. On the other side, there were five re-
gions where a process opposite to SI occurred. These 
are Italian Trentino and Spanish Madrid, Comunidad 
Valenciana, Murcia  and Extremadura. We  observed 
a decline in both socio-economic and environmental 
performance. Average results for all the regions are 
presented in Table S2 in the ESM. To sum up, for most 
of the regions, SI indicator took a positive value (77% 
of 1 554 observations), which leads to the conclusion 
that, in  general, a  process of  sustainable intensifica-
tion can be assumed to have taken place in the FADN 
regions of the EU in the 2004–2018 period, and that 
H1 is verified positively. This corresponds with the re-
sults of some earlier studies conducted at the country 
level (Staniszewski 2018; Expósito and Velasco 2020; 
Baležentis et  al. 2021). Other studies, particularly 
those where a different approach to efficiency estima-
tion was assumed (Staniszewski and Kryszak 2022; 
Staniszewski et al. 2023), tend to report a decline in SI; 
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however, the directional distance function approach 
in those works was more strict.

SI determinants. In the second part of the research, 
obtained SI measures were explained by a set of struc-
tural and weather-related factors. The results of panel 
kernel regression are summarised in  Table 2. All the 
models estimated in the stepwise backward procedure 
are presented. In some cases, exclusion of one variable 
made estimation infeasible. In such a case, we also ex-
cluded another variable with the second highest P-val-
ue. Standard errors were estimated using a bootstrap 
procedure with 50 replications. To check whether the 
number of replications was sufficient, errors were also 
estimated in a procedure with 400 replications. Increas-
ing the number of  replications only slightly changed 
the error estimate, and we therefore considered 50 rep-
lications to be sufficient (Table S4 in the ESM).

From the results, we can draw the conclusion of a sta-
ble, robust impact of some structural variables. When 
it comes to concentration, interestingly, it is beneficial 
for the SI process when land (UAA_S) in  the region 
is concentrated but not when livestock is (LSU_S). This 
can be explained by the fact that larger crop-producing 
farms have a higher potential and proper scale to  in-
vest in modern technologies which improve productiv-
ity and decrease environmental impact. Larger farms 
also have more land resources which they can allocate 

to permanent grassland. Finally, if animal production 
is combined with field crops or grassland cultivation, 
manure spreads on a larger surface, causing less envi-
ronmental impact. Regarding concentration in animal 
production, it is not beneficial from the point of view 
of  the sustainable intensification process. With the 
over-concentration of livestock production come prob-
lems such as deterioration in animal welfare or an in-
crease in point-source ammonia emissions and the risk 
of  creating a  nitrogen imbalance in  the soil. Similar 
results regarding land concentration emerge from the 
works of Žáková Kroupová et al. (2018), based on re-
sults for Czech dairy farms. According to  the work 
of  Skevas and Serra (2016) concerning Dutch arable 
farms, concentration increases technical efficiency but 
decreases environmental efficiency. Gadanakis et  al. 
(2015) found that the most beneficial factor for the 
sustainable intensification of  arable farms in  the UK 
is a medium size. For animal concentration, previous 
studies (Sintori et al. 2019; Kuhn et al. 2020; Soteriades 
et al. 2020) suggest a rather opposite direction of  the 
relationship than the one revealed in our study. How-
ever, all these studies were conducted at the farm level, 
which may indicate the existence of the fallacy of com-
position. Increasing the number of  animals increases 
the environmental efficiency of  individual farms, but 
at the regional, aggregated level, the effect is opposite.
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Figure 1. Sustainable intensification (SI) process in EU FADN regions in years 2004–2018

FADN – Farm Accountancy Data Network
Source: Authors‘ own study
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Table 2. Results of kernel regression; in parenthesis bootstrapped standard errors with 50 replications

Variable
Model configuration

(1) (2) (3) (4) (5) (6) (7) (8) (9)

LSU_S –2.13*** 
(0.32)

–1.81*** 
(0.29)

–1.97*** 
(0.33)

–0.64* 
(0.25)

–0.65** 
(0.2)

–0.62** 
(0.22)

–0.61*** 
(0.16)

–0.54* 
(0.25)

–0.22 
(0.32)

LAB_S 1.28 
(0.88)

1.09 
(0.77) – – – – – – –

UAA_S 1.28* 
(0.51)

1.42* 
(0.56)

1.44*** 
(0.41)

1.7*** 
(0.49)

1.72** 
(0.62)

1.78*** 
(0.44)

1.72*** 
(0.45)

1.49** 
(0.54)

1.41*** 
(0.4)

O_S 2.46** 
(0.83)

1.86 
(1.01)

2.58*** 
(0.81)

0.22 
(0.66)

0.2 
(0.72) – – – –

ABS_SPEC 0.89* 
(0.35)

0.71*** 
(0.2)

0.7*** 
(0.21)

–0.72* 
(0.3)

–0.65*** 
(0.17)

–0.66*** 
(0.18)

–0.55** 
(0.18)

–0.69*** 
(0.17)

–0.73*** 
(0.2)

REL_SPEC –3.95*** 
(0.66)

–3.89*** 
(0.51)

–3.78*** 
(0.48)

0.16 
(0.53) – – – – –

MIXED 0.47 
(0.34) – – – – – – – –

ANIMAL –0.15 
(0.19) – – – – – – – –

PREC – – – –1.7E–4 
(1.5E–4)

–1.7E–4 
(2.5E–4) – – – –

RADIATION – – – –1.5E–4*** 
(1.1E–5)

–1.5E–4*** 
(1.1E–5)

–1.5E–4*** 
(1.1E–5)

–1.6E–4*** 
(1.1E–5)

–1.4E–4*** 
(1.3E–5)

–1.6E–4*** 
(1.3E–5)

CAP_UAA – – – – – – –2.4E–5 
(2.4E–5) – –

SUBSIDIES – – – – – – –0.69* 
(0.3) – 0.43 

(0.4)

RENTED_LAND – – – – – – – –0.08 
(0.14) –

HIRED_LAB – – – – – – – 0.34* 
(0.16)

1.14*** 
(0.25)

R2 0.439 0.388 0.412 0.545 0.509 0.547 0.498 0.744 0.627
N 1 554
Region fixed effects yes
Time fixed effects yes

*, **, *** P < 0.5, P < 0.01, and P < 0.001 respectively; N – number of observations; SI – sustainable intensification index; 
ANIMAL – share of livestock output in total output; ABS_SPEC – distribution of total output among farms of different 
production type measured with Hirschman-Herfindahl Index (HHI); REL_SPEC – distribution of total output among 
farms of different production type measured in relation to average value with Krugman Index; LSU_S – distribution 
of livestock among farms of different economic size measured with standard concentration index (C); LAB_S – distri-
bution of labour among farms of different economic size measured with C; UAA_S – distribution of land among farms 
of different economic size measured with C; O_S – distribution of livestock among farms of different economic size 
measured with C; MIXED – share of output generated by non-specialised farms in total output; PREC – sum of precipi-
tation (in mm) in the growing season (from March 1 to October 31); RADIATION – average daily radiation (KJ·m–2) 
in the growing season; CAP_UAA – capital/land ratio; SUBSIDIES – ratio of total subsidies (excluding on investments) 
to total output; RENTED_LAND – share of rented utilised agricultural area; HIRED_LAB – share of paid labour input; 
for detailed description see the Electronic Supplementary Material (ESM)
Source: Authors‘ own study
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Regarding specialisation, understood as a high share 
of  output generated in  fewer types of  farms (ABS_
SPEC), its impact was significant but ambiguous. The 
sign changed after including weather variables in  the 
model, which may indicate a moderation effect. Finally, 
a  negative relationship was found in  the better-fitted 
models, which can be  explained by  the diminishing 
biodiversity coming with specialisation in one produc-
tion type. Results from other studies are inconclusive 
in  this case. The relationship is  positive among Greek 
sheep dairy farms (Sintori et al. 2019), for Czech dairy 
farms the lowest greenhouse gases (GHG) shadow price 
was estimated in  medium-specialised units (Žáková 
Kroupová et  al. 2018), while for Spanish horticultural 
farms, the relationship is rather negative (Godoy-Durán 
et al. 2017). In summary, among the structural variables, 
the effect of concentration proved to be the most stable 
and significant, allowing H2 to be positively verified.

An important conclusion from this work is  that 
structural variables remained significant even after 
controlling for the impact of weather and other factors. 
Regarding weather, primarily two variables describing 
the sum of precipitation (PREC) and average daily ra-
diation (RADIATION) were included. However, only 
the impact of sun radiation remained significant in the 
end. The negative direction comes from the fact that 
high radiation may lead to droughts, which lower the 
efficiency of  agricultural production. Weather vari-
ables are rarely included in other studies. Only in the 
study of Skevas and Serra (2016) we found a conclusion 
that higher temperature increases the technical and 
environmental inefficiency of Dutch arable farms. The 
authors explain this with higher weed growth and pest 
activity, which demands higher application of  plant 
protection products. The empirical results therefore 
also allow us to accept H3.

CONCLUSION

Within this study, SI in  the EU FADN regions was 
assessed, taking into account socio-economic and en-
vironmental aspects. The findings brought to light that 
in  the majority of  EU regions (106 out of  111 inves-
tigated regions), SI did take place from 2004 to 2018, 
while the degree of  SI varied largely among regions. 
It  was particularly striking that in  several countries 
which joined the EU (e.g. Baltics, Slovenia, Hungary) 
in 2004, a great change in SI took place between 2004 
and 2018. Therefore, we  conclude that the accession 
to  the EU had a  significant positive impact on  the SI 
of  agricultural production in  many member states. 

We argue that the high environmental standards of the 
Common Agricultural Policy (CAP) and the support 
for investments from the CAP made this rapid change 
not just required but also possible.

Although we  conclude that the accession to  the EU 
pushed the process of SI forward in many countries, our 
paper cannot explain the differences in the change of SI 
among all regions (e.g. the great progress in Great Brit-
ain). Hence, further research at the country or regional 
level is necessary to identify further drivers of SI. Such 
research could include qualitative methods that inves-
tigate national (or regional) policies and include stake-
holder interviews. Further quantitative research could 
also expand our model with other factors such as con-
sumer preferences or trends in prices (Staniszewski et al. 
2023) to control if, and in which way, these affect SI.

Even though a  large number of  papers on  the top-
ic of  SI appeared during the last decade, research 
on measuring SI in different EU regions is still scarce 
compared to the studies on the farm level. Our paper 
makes an  important contribution to  recent literature 
by helping to bridge this gap. We also found that on the 
regional level of  analysis, weather affects the process 
of  SI, and therefore weather variables should be  in-
cluded in such models. In our model, only one weather 
variable (the daily radiation) had a significant negative 
effect on the process of SI. This correlation could ex-
plain why in a few regions of Spain, one of the warmest 
countries in the EU, no SI but an opposite process could 
be  observed. Daily radiation is  expected to  increase 
further in the future due to climate change. Therefore, 
we conclude that measures to protect crops and live-
stock from heat and drought are highly needed. Poli-
cies should support farmers’ investments in sustainable 
protection measures, e.g. drip irrigation systems in the 
crops sector. In  the livestock sector, investment sup-
port for modern barns and barn technologies to opti-
mise the temperature inside (e.g. dairy fans) to avoid 
heat stress of the animals is highly needed.

Furthermore, we prove a stable relationship between 
production concentration and the SI process. While 
land concentration had a positive impact, animal pro-
duction concentration affected SI negatively. These 
findings can be used in the future to better shape the 
instruments of  the CAP so that they support a prop-
erly targeted concentration of  production, for exam-
ple, changes in the redistributive payment mechanism 
which would promote medium-sized farms to increase 
their utilised agricultural area.

Although our study provides valuable insights into 
structural and weather-related factors of SI in EU ag-
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riculture, it  is essential to  acknowledge certain limi-
tations of our study. As SI is not directly quantifiable, 
the included variables are only proxies to measure SI. 
Therefore, it is important to note that the use of proxies 
introduces a level of uncertainty, and the selected prox-
ies might not fully capture the complexity of SI. Further-
more, our study only considers aggregated farm-level 
data and no individual farm-level data, which restricts 
the ability to capture the full complexity and variability 
of the studied farms. Therefore, future research should 
strive to apply this model to individual farm-level data 
and to validate and expand upon our results.

To sum up, we conclude that EU policies had suc-
cessfully pushed SI in  the EU member states. In  the 
future, special support is  needed for regions which 
still have a  low level of  SI to  catch up, and further-
more, for regions whose SI is particularly at stake due 
to global warming.
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